The blue skate () has a patchy distribution across the North-East Atlantic Ocean, largely restricted to occidental seas around the British Isles following fisheries-induced population declines and extirpations. The viability of remnant populations remains uncertain and could be impacted by continued fishing and by-catch pressure, and the projected impacts of climate change. We genotyped 503 samples of , obtained opportunistically from the widest available geographic range, across 6 350 single nucleotide polymorphisms (SNPs) using a reduced-representation sequencing approach. Genotypes were used to assess the species' contemporary population structure, estimate effective population sizes and identify putative signals of selection in relation to environmental variables using a seascape genomics approach. We identified genetic discontinuities between inshore (British Isles) and offshore (Rockall and Faroe Island) populations, with differentiation most pronounced across the deep waters of the Rockall Trough. Effective population sizes were largest in the Celtic Sea and Rockall, but low enough to be of potential conservation concern among Scottish and Faroese sites. Among the 21 candidate SNPs under positive selection was one significantly correlated with environmental variables predicted to be affected by climate change, including bottom temperature, salinity and pH. The paucity of well-annotated elasmobranch genomes precluded us from identifying a putative function for this SNP. Nevertheless, our findings suggest that climate change could inflict a strong selective force upon remnant populations of , further constraining its already-restricted habitat. Furthermore, the results provide fundamental insights on the distribution, behaviour and evolutionary biology of in the North-East Atlantic that will be useful for the establishment of conservation actions for this and other critically endangered elasmobranchs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792474 | PMC |
http://dx.doi.org/10.1111/eva.13327 | DOI Listing |
J Phycol
January 2025
Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA.
Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
NewClimate Institute, Cologne, Germany.
Globally, more than 100 countries have adopted net-zero targets. Most studies agree on how this increases the chance of keeping end-of-century global warming below 2°C. However, they typically make assumptions about net-zero targets that do not capture uncertainties related to gas coverage, sector coverage, sinks, and removals.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Kísérletes Kardiológiai és Sebészeti Műtéttani Tanszék Budapest, Nagyvárad tér 4., 1089 Magyarország.
Bioinformatics
January 2025
Biocomputing Group, University of Bologna, Italy.
Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.
Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.
Am J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!