Neuroinflammation Associated With Inborn Errors of Immunity.

Front Immunol

Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.

Published: March 2022

The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807658PMC
http://dx.doi.org/10.3389/fimmu.2021.827815DOI Listing

Publication Analysis

Top Keywords

inborn errors
8
errors immunity
8
congenital diseases
8
autoinflammatory disorders
8
neuroinflammation
4
neuroinflammation associated
4
associated inborn
4
immunity advent
4
advent high-throughput
4
high-throughput sequencing
4

Similar Publications

Introduction: Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms.

Materials And Methods: A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Untargeted metabolomics analysis as a potential screening tool for 3-methylglutaconic aciduria syndromes.

Mol Genet Metab

December 2024

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, China.

The 3-methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of inborn errors of metabolism defined biochemically by detectable elevation of 3-methylglutaconic acid (3-MGA) in the urine. In type 1 (or primary) 3-MGA-uria, distal defects in the leucine catabolism pathway directly cause this elevation. Secondary 3-MGA-uria syndromes, however, are unrelated to leucine metabolism-specific defects but share a common biochemical phenotype of elevated 3-MGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!