Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809372 | PMC |
http://dx.doi.org/10.3389/fphar.2021.817236 | DOI Listing |
Dev Cogn Neurosci
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the increase in mental health symptoms during adolescence. Although literature has largely focused on examining whole PG volume, recent findings have demonstrated associations among pubertal hormone levels, including dehydroepiandrosterone (DHEA), PG subregions, and mental health symptoms during adolescence. Despite the anterior PG's role in DHEA production, studies have not yet examined potential links with transdiagnostic symptomology (i.
View Article and Find Full Text PDFWounds
December 2024
MediWound, Ltd, Yavne, Israel.
Background: Chronic hard-to-heal wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, present significant safety concerns, patient burdens, and challenges to health care systems globally.
Objective: To review the mechanism of action and clinical function of bromelain-based enzymatic debridement (BBD) in the context of wound care, focusing on the mechanism of action of BBD and its formulation for chronic wounds in particular.
Methods: A literature review was conducted to assess both bromelain's mechanism of action as well as clinical and preclinical studies on the use of BBD, searching the PubMed and Google Scholar databases for articles published between November 1992 and July 2024.
Science
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang City, Guizhou, China.
Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!