Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by the presence of cytopenias, ineffective hematopoiesis and frequent transformation into secondary acute myeloid leukemia (secAML). Recent genomic studies provide unprecedented insight into the molecular landscape of clonal proliferation in MDS. Genetic diversity of both MDS and secAML subclones cannot be defined by a single somatic mutation. Mutations of the founding clone may survive over implemented chemotherapy and allogenic hematopoietic cell transplantation (alloHCT), but new subclonal mutations may also appear. Next generation sequencing (NGS) makes it possible to define the mutational profile of disease subclones during the treatment course and has a potential in pre- and post-alloHCT monitoring. Understanding the molecular pathophysiology of MDS may soon allow for monitoring the course of disease and personalized treatment depending on the mutational landscape. In the present paper we report, for the first time in MDS, ASXL1 c.1945G>T, TET2 c.4044+2dupT and c.4076G>T sequence variants. Moreover, we detected RUNX1 c.509-2A>C and SF3B1 c.1874G>T sequence variants. Furthermore, we verify the clinical utility of NGS and pyrosequencing in MDS and secAML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808311PMC
http://dx.doi.org/10.5114/ceji.2021.111166DOI Listing

Publication Analysis

Top Keywords

generation sequencing
8
secondary acute
8
acute myeloid
8
myeloid leukemia
8
mds secaml
8
sequence variants
8
mds
6
genetic variants
4
variants tet2
4
tet2 asxl1
4

Similar Publications

Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized.

View Article and Find Full Text PDF

Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.

View Article and Find Full Text PDF

The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

Orbits of families of discrete dynamical systems evolving in the natural numbers.

Chaos

January 2025

Division of Control and Dynamical Systems, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ta. Sección, 78216 San Luis Potosí, SLP, México.

In this paper, we give a class of one-dimensional discrete dynamical systems with state space N+. This class of systems is defined by two parameters: one of them sets the number of nearest neighbors that determine the rule of evolution, and the other parameter determines a segment of natural numbers Λ={1,2,…,b}. In particular, we investigate the behavior of a class of one-dimensional maps where an integer moves to an other integer given by the sum of the nearest neighbors minus a multiple of b∈N+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!