mRNA Expressions of Methylation Related Enzymes and Duration of Thermal Conditioning in Chicks.

J Poult Sci

Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.

Published: January 2022

DNA methylation regulates gene expression by modifying the nucleosome structure of DNA, without altering the gene sequence. It has been reported that DNA methylation reactions are catalyzed by several enzymes. In chickens, thermal conditioning treatment affects the central DNA methylation levels. The purpose of this study was to clarify the changes in DNA methylation and demethylation factors during thermal conditioning in the hypothalamus of 3-day-old chicks. Male chicks (3-days old) were exposed to 40±0.5°C as a thermal conditioning treatment for 1, 2, 6, 9, or 12 h. The control chicks were kept in a thermoneutral zone (30±0.2°C). After thermal conditioning, the mRNA levels of DNA methyltransferase (DNMT)-1, -3a, -3b, and ten-eleven translocation (TET)-1, -2, and -3 in the hypothalamus were measured by q-PCR. The mRNA levels of DNMT-3a and TET-1 were increased by thermal conditioning. Moreover, the expression level of TET-1 increased with the loading time of the thermal conditioning. The gene expressions of DNMT-1, DNMT-3b, TET-2, and TET-3 were not affected by thermal conditioning. Since DNMT-3a is a catalyst for DNA methylation and TET-1 catalyzes the oxidation of methylated cytosine, it is suggested that the thermal conditioning increased the activation of DNA methylation and demethylation factors, which occur in the hypothalamus of neonatal chicks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791769PMC
http://dx.doi.org/10.2141/jpsa.0210029DOI Listing

Publication Analysis

Top Keywords

thermal conditioning
36
dna methylation
24
thermal
9
conditioning
9
dna
8
conditioning treatment
8
methylation demethylation
8
demethylation factors
8
mrna levels
8
tet-1 increased
8

Similar Publications

Corona Poling Enabling Gravure Printing of Electroactive Flexible PVDF-TrFE Devices.

Materials (Basel)

December 2024

Portici Research Centre, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy.

Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low thermal inertia and surface-scaling performance. However, solution-based processes, like printing, miss fine control of the microstructure during film-forming, making it difficult to achieve a high level of polarization, necessary for PVDF to exhibit electroactive characteristics.

View Article and Find Full Text PDF

Whilst the world sees the tremendous growth of mobile phone technology, radiofrequency electromagnetic radiation (RF-EMR) induced possible health effects have emerged as a topic of recent day debate. The current study is designed to test the hypothesis that chronic 900MHz radiation exposure would potentially dysregulate the stress response system (HPA axis) in vivo, via, its non-thermal mechanisms, leading to alterations in the microarchitecture of the adrenal gland, vulnerable brain regions such as the hippocampus which may results in altered behaviours in rats. Male albino Wistar rats aged four weeks, weighing 50-60g were subjected to 900MHz radiation from a cellphone for four weeks at a rate of one hour per day.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.

View Article and Find Full Text PDF

In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization.

View Article and Find Full Text PDF

Composites Based on PLA/PHBV Blends with Nanocrystalline Cellulose NCC: Mechanical and Thermal Investigation.

Materials (Basel)

December 2024

Łukasiewicz-Upper Silesian Institute of Technology, The Welding Centre, Bł. Czesława, 44-100 Gliwice, Poland.

This study investigates the physical and mechanical properties of biodegradable composites based on PLA/PHBV blends modified with different content of nanocrystalline cellulose (NCC) of 5, 10, and 15 wt.%. Density measurements reveal that the density of the composite increases with increasing NCC content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!