Background: N acetyl cysteine and Berberis lycium Royale root bark have been used to treat kidney diseases. Objectives of the study were to evaluate the individual and combined effect of N acetyl cysteine and aqueous extract of Berberis lycium Royale root bark in Gentamicin induced nephrotoxicity in rats. This randomized control trial conducted at Islamic International Medical College, Rawalpindi in collaboration with NIH, Islamabad in 1 month from Sep to Oct 2020.
Methods: Fifty Wister albino rats of 10-12 weeks old were divided into five groups with 10 in each group. Group 1 was normal control given food and water only and remaining 40 were in treatment groups. Nephrotoxicity was induced by intraperitoneal injection of Gentamicin (80mg/kg) for 6 days in group 2, 3, 4 and 5. After induction of nephrotoxicity, Group 3 was administered N acetyl cysteine 140mg/kg per oral, Group 4 was given aqueous extract of Berberis lycium Royale root bark 400 mg/kg per oral and Group 5 was given both N acetyl cysteine 140mg/kg per oral and aqueous extract of Berberis lycium Royale root bark 400 mg/kg per oral for 21 days. Serum uric acid was measured in all groups after 30 days to observe the reversal of renal injury.
Results: The results of this study indicate that Group 3, Group 4 and Group 5 showed a decrease in serum uric acid level as compared to Disease Control Group (Group 2). However, Group 5 significantly reduced uric acid (p-0.05).
Conclusions: Combined effect of N acetyl cysteine and aqueous extract of Berberis lycium Royale root bark showed improvement in uric acid level in Gentamicin induced nephrotoxicity in rats.
Download full-text PDF |
Source |
---|
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Biotechnology, National institute of Pharmaceutical Education and Research (NIPER), Guwahati, India. Electronic address:
Cardiotoxic effect of Doxorubicin (Dox) limits its clinical application. Previously, we reported that Dox induces phosphorylation of lamin A/C (pS22 lamin A/C), increased nuclear size, damage to the nuclear membrane, and cell death. However, the activation of signalling pathway during this event remains elusive, and it is unclear whether increased phospho-lamin A/C activates the cell death pathway in heart.
View Article and Find Full Text PDFViruses
January 2025
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Japan.
: We previously demonstrated that the intranasal administration of cell-penetrating Tat peptide-modified carrier, PEG-PCL-Tat, improves drug delivery to the central nervous system. This study aimed to evaluate the potential of the post-onset intranasal administration of -acetyl-L-cysteine (NAC) combined with PEG-PCL-Tat (NAC/PPT) for neuropathic pain. : Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice.
View Article and Find Full Text PDFNutrients
January 2025
School of Medicine, Valencia Catholic University, C/Quevedo 2, 46001 Valencia, Spain.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age and requires better treatment. -acetylcysteine (NAC) is known to be beneficial under such conditions owing to its antioxidant potential and insulin-sensitizing properties. The effect of NAC on the reproductive outcomes of PCOS patients was examined in this meta-analysis.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has profoundly impacted global health, with pneumonia emerging as a major complication in severe cases. The pathogenesis of COVID-19 is marked by the overproduction of reactive oxygen species (ROS) and an excessive inflammatory response, resulting in oxidative stress and significant tissue damage, particularly in the respiratory system. Antioxidants have garnered considerable attention for their potential role in managing COVID-19 pneumonia by mitigating oxidative stress and modulating immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!