Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Prediction of the depth of anesthesia is a difficult job in the biomedical field.
Objective: This study aimed to build a boosting-based prediction model to predict the depth of anesthesia based on four clinical monitoring data.
Methods: Boosting is a framework algorithm that is used to train a series of weak learners into strong learners by assigning different weights according to their classification accuracy. The input of the boosting-based prediction model included four types of clinical monitoring data: electromyography, end-tidal carbon dioxide partial pressure, remifentanil dosage, and flow rate. The output was the depth of anesthesia.
Results: The boosting framework model built in this study achieved higher prediction accuracy and a lower discrete degree in predicting the depth of anesthesia compared with the DT-, KNN-, and SVM-based models.
Conclusions: The boosting framework was used to set up a prediction model to predict the depth of anesthesia based on four clinical monitoring data. In the experiments, the boosting framework model of this study achieved higher prediction accuracy and a lower discrete degree. This model will be useful in predicting the depth of anesthesia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028611 | PMC |
http://dx.doi.org/10.3233/THC-THC228045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!