Intracranial vessel perforation is a peri-procedural complication during endovascular therapy (EVT). Prompt recognition is important as its occurrence is strongly associated with unfavorable treatment outcomes. However, perforations can be hard to detect because they are rare, can be subtle, and the interventionalist is working under time pressure and focused on treatment of vessel occlusions. Automatic detection holds potential to improve rapid identification of intracranial vessel perforation. In this work, we present the first study on automated perforation detection and localization on X-ray digital subtraction angiography (DSA) image series. We adapt several state-of-the-art single-frame detectors and further propose temporal modules to learn the progressive dynamics of contrast extravasation. Application-tailored loss function and post-processing techniques are designed. We train and validate various automated methods using two national multi-center datasets (i.e., MR CLEAN Registry and MR CLEAN-NoIV Trial), and one international multi-trial dataset (i.e., the HERMES collaboration). With ten-fold cross-validation, the proposed methods achieve an area under the curve (AUC) of the receiver operating characteristic of 0.93 in terms of series level perforation classification. Perforation localization precision and recall reach 0.83 and 0.70 respectively. Furthermore, we demonstrate that the proposed automatic solutions perform at similar level as an expert radiologist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2022.102377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!