A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced neuroimaging genetics using multi-view non-negative matrix factorization with sparsity and prior knowledge. | LitMetric

Enhanced neuroimaging genetics using multi-view non-negative matrix factorization with sparsity and prior knowledge.

Med Image Anal

Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea. Electronic address:

Published: April 2022

Neuroimaging genetics is a powerful approach to jointly explore genetic features with rich brain imaging phenotypes for neurodegenerative diseases. Conventional imaging genetics approaches based on canonical correlation analysis cannot accommodate multimodal inputs effectively and have limited interpretability. We propose a novel imaging genetics approach based on non-negative matrix factorization (NMF). By leveraging the parsimonious property known as topic modeling in multi-view NMF, we add sparsity constraints and prior information to identify a sparse set of biologically related features across modalities. Thus, our approach incorporates prior knowledge and improves multimodal integration capabilities and interpretability. We applied our algorithm to simulated and real imaging genetics datasets of Parkinson's disease (PD) for performance evaluation. Our algorithm could identify important associated features mapped to interpretable distinct topics more robustly than other methods. It revealed promising features of single-nucleotide polymorphisms and brain regions related to a subset of PD-related clinical scores in a few topics using a real imaging genetic dataset. The proposed imaging genetics approach can reveal novel associations between genetic and neuroimaging features to improve understanding of various neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2022.102378DOI Listing

Publication Analysis

Top Keywords

imaging genetics
16
neuroimaging genetics
8
non-negative matrix
8
matrix factorization
8
prior knowledge
8
neurodegenerative diseases
8
genetics approach
8
real imaging
8
genetics
6
imaging
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!