Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that is widely distributed in the natural environment. Cohort study showed that PFOA-producing workers displayed a significant increase for mortality of liver cancer and liver cirrhosis. However, the underlying mechanism of PFOA-induced hepatotoxicity is far from clear. In this research, cell viability, apoptosis rate, reactive oxygen species, mitochondrial membrane potential (ΔΨm), calcium ion levels, and protein expressions of human liver L02 cells in response to PFOA were determined. Results indicated that a 24 h-treatment with 64 and 256 μM PFOA could remarkably induce mitochondrial-mediated apoptosis via initiating the vicious cycle between endoplasmic reticulum stress and oxidative stress, thereby increasing the level of calcium ion and decreasing the level of ΔΨm, simultaneously elevating the protein expressions of Cyclophilin D (CYPD), Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax), Bcl-2-like protein 11 (Bim), cytochrome C (Cyt-C), 78 kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and thioredoxin-interacting protein (TXNIP), while inhibiting the protein expression of tumor necrosis factor receptor-associated protein 1 (TRAP1), Lon protease 1 (Lonp1), Pro-caspase-9, B-cell lymphoma-2 (Bcl-2), and Sigma 1-type opioid receptor (Sig-1R) (p < 0.05). To sum up, PFOA-induced hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro was regulated by endoplasmic reticulum (ER)-mitochondria communication via mitochondria-associated ER membranes (MAMs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2022.109844DOI Listing

Publication Analysis

Top Keywords

protein
10
perfluorooctanoic acid
8
endoplasmic reticulum
8
reticulum stress
8
mitochondrial-mediated apoptosis
8
calcium ion
8
protein expressions
8
acid induces
4
induces hepatocellular
4
hepatocellular endoplasmic
4

Similar Publications

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato.

Plant Cell Environ

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.

Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.

View Article and Find Full Text PDF

Mir-615-5p inhibits cervical cancer progression by targeting TMIGD2.

Hereditas

January 2025

Obstetrics and Gynecology Medical Centre, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No.105, Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.

Background: Cervical cancer (CC) is a prevalent gynecological malignancy, contributing to a substantial number of fatalities among women. MicroRNAs (miRNAs) have emerged as promising biomarkers with significant potential for the early detection and prognosis of CC.

Objective: This study aimed to explore the clinical significance and biological role of miR-615-5p in CC, with the goal of identifying novel biomarkers for this disease.

View Article and Find Full Text PDF

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!