CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure.

Stem Cell Res Ther

Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, 510630, China.

Published: February 2022

Background: Mesenchymal stem cell (MSC) transplantation is emerging as a promising cell therapeutic strategy in acute liver failure (ALF) clinical research. The potency of MSCs to migrate and engraft into targeted lesions could largely determine their clinical efficacy, in which chemokine/receptor axes play a crucial role. Unfortunately, the downregulation of chemokine receptors expression after in vitro expansion results in a poor homing capacity of MSCs.

Methods: By evaluating the chemokine expression profile in the liver of ALF patients and ALF mice, we found that CCL2 expression was highly upregulated in damaged livers, while the corresponding receptor, CCR2, was lacking in cultured MSCs. Thus, we genetically modified MSCs to overexpress CCR2 and investigated the targeted homing capacity and treatment efficacy of MSC compared to those of the MSC control.

Results: In vivo and ex vivo near-infrared fluorescence imaging showed that MSC rapidly migrated and localized to injured livers in remarkably greater numbers following systemic infusion, and these cells were retained in liver lesions for a longer time than MSC. Furthermore, MSC exhibited significantly enhanced efficacy in the treatment of ALF in mice, which was indicated by a dramatically improved survival rate, the alleviation of liver injury with reduced inflammatory infiltration and hepatic apoptosis, and the promotion of liver regeneration.

Conclusions: Altogether, these results indicate that CCR2 overexpression enhances the targeted migration of MSCs to damaged livers, improves their treatment effect, and may provide a novel strategy for improving the efficacy of cell therapy for ALF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817567PMC
http://dx.doi.org/10.1186/s13287-022-02729-yDOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
acute liver
8
liver failure
8
homing capacity
8
alf mice
8
damaged livers
8
liver
7
msc
6
alf
5
ccr2-overexpressing mesenchymal
4

Similar Publications

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Unlabelled: Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway.

View Article and Find Full Text PDF

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF

Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.

View Article and Find Full Text PDF

We studied the effect of reprogrammed CD8 T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!