Background: Depression is one of the commonest mental disorders in primary care but is poorly identified. The objective of this review was to determine the level of detection of depression by primary care clinicians and its determinants in studies from low- to middle-income countries (LMICs).

Methods: A systematic review and meta-analysis was conducted using PubMed, PsycINFO, MEDLINE, EMBASE, LILAC, and AJOL with no restriction of year of publication. Risk of bias within studies was evaluated with the Effective Public Health Practice Project (EPHPP). "Gold standard" diagnosis for the purposes of this review was based on the 9-item Patient Health Questionnaire (PHQ-9; cutoff scores of 5 and 10), other standard questionnaires and interview scales or expert diagnosis. Meta-analysis was conducted excluding studies on special populations. Analyses of pooled data were stratified by diagnostic approaches.

Results: A total of 3159 non-duplicate publications were screened. Nine publications, 2 multi-country studies, and 7 single-country studies, making 12 country-level reports, were included. Overall methodological quality of the studies was good. Depression detection was 0.0% in four of the twelve reports and < 12% in another five. PHQ-9 was the main tool used: the pooled detection in two reports that used PHQ-9 at a cutoff point of 5 (combined sample size = 1426) was 3.9% (95% CI = 2.3%, 5.5%); in four reports that used PHQ-9 cutoff score of 10 (combined sample size = 5481), the pooled detection was 7.0% (95% CI = 3.9%, 10.2%). Severity of depression and suicidality were significantly associated with detection.

Conclusions: While the use of screening tools is an important limitation, the extremely low detection of depression by primary care clinicians poses a serious threat to scaling up mental healthcare in LMICs. Interventions to improve detection should be prioritized.

Systematic Review Registration: PROSPERO CRD42016039704 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818168PMC
http://dx.doi.org/10.1186/s13643-022-01893-9DOI Listing

Publication Analysis

Top Keywords

primary care
16
detection depression
12
depression primary
12
phq-9 cutoff
12
middle-income countries
8
systematic review
8
review meta-analysis
8
care clinicians
8
meta-analysis conducted
8
pooled detection
8

Similar Publications

Purpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.

View Article and Find Full Text PDF

Objective: To assess the effectiveness of cognitive functional therapy (CFT) in reducing disability and pain compared to other interventions in chronic spinal pain patients.

Methods: Five databases were queried to October 2023 for retrieving randomized controlled trials (RCTs), including patients with chronic spinal pain and administering CFT. Primary outcomes were disability and pain.

View Article and Find Full Text PDF

Sex Differences in Melanoma Survival-a GEM study.

JNCI Cancer Spectr

January 2025

University of New Mexico Comprehensive Cancer Center, Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA.

Sex differences in melanoma are prominent, with females having a significant survival advantage. However, it is unclear why we see this survival advantage. Here we investigate the relationship between sex, clinicopathologic variables, and melanoma specific survival in 1,753 single primary melanomas from patients in the GEM study.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Background: Since the inception of the ASHAs in the year 2005, their work horizons have increased from Reproductive, Maternal, Newborn, Child, and Adolescent health (RMNCH + A), Communicable and Non-Communicable Diseases (CD & NCD) to oral health, ophthalmologic care, and other supportive community level healthcare services. The present literature lacks comprehensive understanding and synthesis of domain-wise knowledge of ASHAs and the factors affecting their knowledge. Therefore, this study aimed to synthesize and collate the relevant evidence to understand the overall knowledge of ASHAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!