The paper presents steady-state and time-resolved experiments on photophysical processes associated with photodynamic inactivation of infections provided by nebulization of Radachlorin photosensitizer solution. As models of surfaces subjected to photodynamic inactivation we used glass, plant leaf, mushroom cap peel and superficial fascia of chicken and salmon skin flaps. The oxygen content in the photosensitizer solution was varied by blowing with atmospheric air and with pure oxygen. It was shown that singlet oxygen was generated efficiently in the aerosol jet and that its amount increased noticeably at higher oxygen concentrations. The kinetics of photosensitizer photobleaching on different surfaces were found to be significantly different with characteristic decay times varying from seconds for leaf and glass to minutes for fascial flaps. This observation was attributed to much faster oxygen depletion on rough crumbly surfaces of biological samples due to effective oxidation reactions occurred. The singlet oxygen generation and degradation times, and the relative quantum yield were determined on different surfaces by recording time-resolved phosphorescence at about 1270 nm under normoxic and hyperoxic conditions and analyzed on the basis of the set of master equations. The results obtained provide reference marks for choosing optimal irradiation durations for photodynamic inactivation of pathogenic infectious agents (bacteria, mycobacteria, fungi, viruses) on mucous membranes, including the tracheobronchial tree.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2022.112395 | DOI Listing |
Turk J Chem
October 2024
Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkiye.
A new nonperipheral zinc(II) phthalocyanine bearing octa carboxylic acid ethyl ester derivative substituted triazole attached propylmercaptothiobenzylmercapto derivative was synthesized via the tetramerization reaction of phthalonitrile. The photochemical in vitro photodynamic activity of zinc(II) phthalocyanine (), such as human nonsmall cell lung carcinoma cell lines, was investigated in this study. The singlet oxygen generation property of novel zinc(II) phthalocyanine () was also examined due to the significantly high singlet oxygen quantum yield of (F = 0.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.
View Article and Find Full Text PDFChemphyschem
January 2025
Universität des Saarlandes, Biophysikalische Chemie FR 8.1 Chemie, Campus B 2 2, 66123, Saarbrücken, GERMANY.
The reaction of terrylene in p-terphenyl with molecular oxygen is reinvestigated by TIRF-microscopy with λexc = 488 nm or λexc = 561 nm and 488 nm. A similar range of fluorescent products is obtained under both experimental conditions with a reaction quantum yield Φr > 10-7 for those molecules which undergo the photoreaction. The majority of these oxygen-susceptible molecules reacts via an electronically relaxed, dark intermediate, presumably an endoperoxide, with a lifetime of
Breast Cancer Res Treat
January 2025
Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil.
Purpose: Triple-negative breast cancer (TNBC) accounts for 20% of all breast cancer cases and is notably resistant to radiotherapy (RT). Photodynamic therapy (PDT) using porphyrins or their derivatives has shown promise as a potential cancer treatment and immune activator. This study evaluated the effects of combining PDT and RT in sublethal conditions for TNBC using in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!