MT1-MMP plays a crucial role in promoting the cellular invasion of cancer cells by degrading the extracellular matrix to create a path for migration. During this process, its localization at the leading edge of migrating cells is critical, and it is achieved by targeted transport of MT1-MMP-containing vesicles along microtubules by kinesin superfamily motor proteins (KIFs). Here we identified three KIFs involved in MT1-MMP vesicle transport: KIF3A, KIF13A, and KIF9. Knockdown of KIF3A and KIF13A effectively inhibited MT1-MMP-dependent collagen degradation and invasion, while knockdown of KIF9 increased collagen degradation and invasion. Our data suggest that KIF3A/KIF13A dependent MT1-MMP vesicles transport takes over upon KIF9 knockdown. Live-cell imaging analyses have indicated that KIF3A and KIF13A coordinate to transport the same MT1-MMP-containing vesicles from the trans-Golgi to the endosomes, and KIF13A alone transports the vesicle from the endosome to the plasma membrane. Taken together, we have identified a unique interplay between three KIFs to regulate leading edge localization of MT1-MMP and MT1-MMP-dependent cancer cell invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355896PMC
http://dx.doi.org/10.1016/j.matbio.2022.01.004DOI Listing

Publication Analysis

Top Keywords

kif3a kif13a
16
kinesin superfamily
8
superfamily motor
8
motor proteins
8
cancer cells
8
leading edge
8
transport mt1-mmp-containing
8
mt1-mmp-containing vesicles
8
three kifs
8
kif9 knockdown
8

Similar Publications

MT1-MMP plays a crucial role in promoting the cellular invasion of cancer cells by degrading the extracellular matrix to create a path for migration. During this process, its localization at the leading edge of migrating cells is critical, and it is achieved by targeted transport of MT1-MMP-containing vesicles along microtubules by kinesin superfamily motor proteins (KIFs). Here we identified three KIFs involved in MT1-MMP vesicle transport: KIF3A, KIF13A, and KIF9.

View Article and Find Full Text PDF

Different types of endosomal vesicles show distinct distribution patterns within cells. While early endosomes can be found throughout the cell, recycling endosomal vesicles and tubules tend to cluster near the microtubule organizing center in the perinuclear region in most cell types. The molecular mechanisms underlying the steady-state distribution and dynamics of various types of endosomal vesicles has long remained enigmatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!