A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of In silico tools for screening buffers to overcome physical instability of Abatacept. | LitMetric

Rheumatoid arthritis is an autoimmune disorder. Abatacept (CTLA4-Ig) is used for the treatment of Rheumatoid arthritis. Abatacept is a monoclonal antibody. Monoclonal antibodies undergo chemical (e.g. oxidation, deamidation, hydrolysis) and physical (e.g. aggregation, unfolding) instabilities while handling and storage. Abatacept is also prone to aggregation. Stabilizing agents such as buffers are used to stabilize monoclonal antibodies. But, the selection of the appropriate buffer is a time-consuming process because after testing many buffers based on the analysis of the results the appropriate buffer is identified. To overcome this issue in the current study computational tools were utilized to virtually screen different buffers to select the appropriate buffer. Ligand binding is the principal mechanism of conformational stability of proteins. For the buffers as well ligand binding is the most common mechanism for enhancing the thermodynamic stability of proteins. Generally it is observed that by enhancing the thermodynamic stability there is reduction in the rate of aggregation of proteins. Buffer (ligand) binds to the native state of the protein preferentially; it results in stabilization of the protein, while in the case of denatured protein it has no impact. There are many studies conducted involving the proteins in buffer solutions but very limited information is available about the mechanism of protein-buffer interactions. In the current study ligand binding mechanism of protein - buffer interaction was studied using molecular docking. After the docking buffers were ranked according to their energy value. The lower energy scores represent better protein-buffer (ligand) binding affinity compared to high energy values. It was observed that Phosphate with a binding affinity of -107.9 kcal/mol was the buffer with the least binding energy followed by Citrate (-70.6 kcal/mol), Melglumine (-66.6 kcal/mol), Arginine (-64.5 kcal/mol), Glucono delta lactone (-62.6 kcal/mol), Sodium citrate (-56.5 kcal/mol), Tromethamine (-52.3 kcal/mol), Glycine HCl (-37.2 kcal/mol), Sulfuric acid (-37.7 kcal/mol), Ammonium acetate (-31.1 kcal/mol), Acetic acid (-30.7 kcal/mol). With lower binding energy higher is the affinity between the ligand and protein. So phosphate was identified as a buffer with the highest affinity with Abatacept.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trim.2022.101551DOI Listing

Publication Analysis

Top Keywords

ligand binding
16
appropriate buffer
12
rheumatoid arthritis
8
monoclonal antibodies
8
buffer
8
current study
8
buffer ligand
8
stability proteins
8
enhancing thermodynamic
8
thermodynamic stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!