Objectives: The objective of this study was to define the impact of heating rate on the crystal growth, the mechanical properties, and the biocompatibility of three different kinds of CAD/CAM glass-ceramics treated with a conventional furnace.

Methods: Lithium disilicate (IPS EMax-CAD, Ivoclar Vivadent) (LS) and two zirconia reinforced lithium silicate (ZLS) ceramics (Vita Suprinity PC, VITA Zahnfabrik; Celtra Duo, Dentsply Sirona) (ZLSS; ZLSC) were used. The mechanical properties and the crystal growth were evaluated on 42 specimens (n = 14 per group). The thermal treatments recommended by the manufacturers were carried out. All groups were tested for fracture toughness (Ft) and Vickers hardness (Hv). Scanning electron microscope (SEM) images were taken after a slight surface etching with hydrofluoric acid solution (1% for 20 s). Differential Thermal Analysis (DTA) was performed and cellular adhesion with human periodontal ligament stem cells (hPDLSCs) culture was qualitatively assayed. Data were analyzed with Repeated Measurements ANOVA and ANOVA followed by Tukey post hoc test.

Results: The crystals' mean size (±SD) after heat treatment was 1650.0 (±340.0) nm for LS, 854.5 (±155.0) nm for ZLSS and 759.9 (±118.4) nm for ZLSC (p < 0.05 among the groups). As consequence of crystallization, the Hv was 6.1 ± 0.3 GPa for LS, 7.6 ± 0.7 GPa for ZLSS and 7.1 ± 0.5 GPa for ZLSC (p < 0.05 for LS vs ZLSS and ZLSC), while the Ft was 2.2 ± 0.1 MPa m for LS, 4.7 ± 0.8 MPa m for ZLSS and 3.8 ± 0.6 MPa m for ZLSC (p < 0.05 among the groups). The DTA curves showed a crystallization process for LS, ZLSS and ZLSC at a temperature range 810-840 °C. The amount of adherent hPDLSCs was superior on LS than on ZLS.

Conclusions: All the CAD/CAM materials can be properly crystallized if heat treated following the manufacturers' instructions. The crystallization process highly depends on temperature. ZLS glass ceramics show significantly inferior crystals dimensions and higher fracture toughness and Vickers hardness than LS ceramic. hPDLSCs cultured on LS have a superior adhesion than those cultured on ZLS.

Clinical Significance: The value of this study relies on the demonstration that a proper heat-treatment of CAD/CAM lithium disilicate and ZLS glass ceramics generates products that are suitable for clinical use . The differences highlightable in mechanical properties and biocompatibility behavior do not affect their successful clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2022.104054DOI Listing

Publication Analysis

Top Keywords

lithium disilicate
8
zirconia reinforced
8
reinforced lithium
8
lithium silicate
8
crystal growth
8
mechanical properties
8
lithium
4
disilicate zirconia
4
silicate glass-ceramics
4
glass-ceramics cad/cam
4

Similar Publications

Minimally Invasive Glass-Ceramic Restorations: Clinical and Patient-Reported Outcomes in Full-Mouth Rehabilitations.

J Dent

January 2025

Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland.

Objectives: To evaluate clinical outcomes (restoration survival, technical and biological complications), and patient-reported outcome measures (PROMs) of full mouth rehabilitation with minimally invasive glass-ceramic restorations after up to 12 years of clinical service.

Materials And Methods: Twenty individuals (12 females, 8 males) received full-mouth rehabilitation with minimally invasive tooth-supported glass-ceramic restorations during the years 2009 - 2017 and agreed to participate in a follow-up visit. Full dental and periodontal examinations were completed, and the restorations were evaluated according to United States Public Health Service (USPHS) criteria.

View Article and Find Full Text PDF

Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.

Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).

View Article and Find Full Text PDF

Fit accuracy and fracture resistance evaluation of advanced lithium disilicate crowns (in- vitro study).

BMC Oral Health

January 2025

Division of Fixed Prosthodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.

Background: Increasing demand for durable and aesthetically pleasing dental restorations, including laminates, inlays, onlays, and crowns, has led to advancements in all-ceramic systems, particularly with the development of advanced lithium disilicate materials. However, limited data on the fit accuracy and fracture resistance of these materials restricts their wider application in clinical restorative practices.

Aim Of The Study: This in vitro study aims to compare the marginal and internal fit, assess the fracture resistance, and evaluate the failure modes of crowns fabricated from advanced and conventional lithium disilicate materials.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.

Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).

View Article and Find Full Text PDF

Effect of crystallization and finish line curvature on the marginal integrity of lithium disilicate crowns.

J Prosthodont

January 2025

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.

Purpose: This study aimed to investigate the effect of crystallization and finish line curvature on the integrity of lithium disilicate crowns fabricated by using partially crystallized (P) and fully crystallized (F) blocks.

Materials And Methods: Forty-eight lithium disilicate crowns were fabricated based on the designated lithium disilicate blocks and finish line curvatures. The specimens were divided into four groups (n = 12 each): P block with a curved finish line (PC), P block with a straight finish line (PS), F block with a curved finish line (FC), and F block with a straight finish line (FS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!