Pramipexole is a potent agonist of D and D dopamine receptors, currently approved for clinical use in Parkinson's disease (PD) and restless leg syndrome. Several studies have shown that pramipexole significantly increases the risk of pathological gambling and impulse-control disorders. While these iatrogenic complications can impose a severe social and financial burden, their treatment poses serious clinical challenges. Our group previously reported that the steroidogenic inhibitor finasteride reduced pathological gambling severity in PD patients who developed this complication following pramipexole treatment. To study the mechanisms underlying these effects, here we tested the impact of finasteride in a rat model of pramipexole-induced alterations of probability discounting. We previously showed that, in rats exposed to low doses of the monoamine-depleting agent reserpine (1 mg/kg/day, SC), pramipexole (0.3 mg/kg/day, SC) increased the propensity to engage in disadvantageous choices. This effect was paralleled by a marked D receptor upregulation in the nucleus accumbens. First, we tested how finasteride (25-50 mg/kg, IP) intrinsically affects probability discounting. While the highest dose of finasteride produced a marked lack of interest in lever pressing (manifested as a significant increase in omissions), the 25 mg/kg (IP) dose did not intrinsically modify probability discounting. However, this finasteride regimen significantly reduced the adverse effects of reserpine and pramipexole in probability discounting by diminishing rats' propensity to engage in highly disadvantageous probabilistic choices. The same regimen also reversed the upregulation of D receptors in the nucleus accumbens induced by reserpine and pramipexole. These findings confirm that finasteride opposes the impulsivity caused by pramipexole and suggest that this effect may be underpinned by a normalizing effect on D receptor expression in the nucleus accumbens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012661 | PMC |
http://dx.doi.org/10.1016/j.brainresbull.2022.01.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!