A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modified cellulose nanofibers aerogels as a novel air filters; Synthesis and performance evaluation. | LitMetric

Nanofilters made with high adsorption freeze-dried modified cellulose nanofiber (CNF) aerogel were produced. The modification was made using functional groups containing phthalimide, and then their ability to adsorb particulate matter (PM) was evaluated and compared with the control filter (HEPA). The results showed that the highest adsorption of PM (99.95%) belonged to the nanofilters made of 1.5% phthalimide-modified CNF aerogel, and the lowest adsorption (76.66%) was related to the control samples. Moreover, based on the results, the nanofilter produced from freeze-dried phthalimide-modified CNF aerogel showed high filtration efficiency as well as excellent resistance to temperature and humidity. This modification enables the filter to operate in different environmental conditions, especially for particles less than 0.1 μm that are mainly responsible for reducing air quality, human health, air visibility, and climate change. In conclusion, we developed an environmentally friendly biodegradable nanofilter capable of high-performance filtration functions and structural stability in different environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.01.156DOI Listing

Publication Analysis

Top Keywords

cnf aerogel
12
modified cellulose
8
phthalimide-modified cnf
8
environmental conditions
8
cellulose nanofibers
4
nanofibers aerogels
4
aerogels novel
4
novel air
4
air filters
4
filters synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!