E3 ligases and degrons, the sequences they recognize in target proteins, are key parts of the ubiquitin-mediated proteolysis system. There are several examples of alterations of these two components of the system that have a role in cancer. Here we uncover the landscape of the contribution of such alterations to tumorigenesis across cancer types. We first systematically identified new instances of degrons across the human proteome by using a random forest classifier and validated the functionality of a dozen of them, exploiting somatic mutations across >7,000 tumors. We detected signals of positive selection across known and new degron instances. Our results reveal that several oncogenes are frequently targeted by mutations that affect the sequence of their degrons or their cognate E3 ubiquitin ligases, causing an abnormal increase in their protein abundance. Overall, an important number of driver mutations across primary tumors affect either degrons or E3-ubiquitin ligases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43018-019-0001-2DOI Listing

Publication Analysis

Top Keywords

proteolysis system
8
driver mutations
8
systematic analysis
4
analysis alterations
4
alterations ubiquitin
4
ubiquitin proteolysis
4
system reveals
4
reveals contribution
4
contribution driver
4
mutations
4

Similar Publications

Background/objectives: Circadian clocks are endogenous systems that regulate numerous biological, physiological, and behavioral events in living organisms. Aging attenuates the precision and robustness of circadian clocks, leading to prolonged and dampened circadian gene oscillation rhythms and amplitudes. This study investigated the effects of food-derived polyphenols such as ellagic acid and its metabolites (urolithin A, B, and C) on the aging clock at the cellular level using senescent human fibroblast cells, TIG-3 cells.

View Article and Find Full Text PDF

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.

View Article and Find Full Text PDF

Organophosphate esters inhibit enzymatic proteolysis through non-covalent interactions.

Environ Int

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.

View Article and Find Full Text PDF

Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex.

View Article and Find Full Text PDF

[Progress on the role of N-end rule pathways in protein degradation].

Sheng Li Xue Bao

December 2024

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China.

The N-end rule pathway is a protein degradation pathway mediated by the ubiquitin-proteasome system, which specifically targets and degrades target proteins by recognizing specific residues at the N-terminus of the proteins. The residues which play a crucial role in the N-end rule pathway are called degrons, also known as N-degrons, as they are usually unstable at the N-terminal end of the protein. Currently, several N-end rule pathways have been identified in the eukaryotes, including the Arg/N-end rule, Ac/N-end rule, and Pro/N-end rule pathways, as well as the recently discovered Gly/N-end rule pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!