Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ZnInS (ZIS) is an efficient photocatalyst for solar hydrogen (H) generation from water splitting owing to its suitable band gap, excellent photocatalytic behaviour and high stability. Nevertheless, modifications are still necessary to further enhance the photocatalytic performance of ZIS for practical applications. This has led to our interest in exploring phosphorus doping on ZIS for photocatalytic water splitting, which has not been studied till date. Herein, phosphorus-doped ZnInS (P-ZIS) was modelled via Density Functional Theory to investigate the effects of doping phosphorus on the structural and electronics properties of ZIS as well as its performance toward photocatalytic water splitting. This work revealed that the replacement of S3 atom by substitutional phosphorus gave rise to the most stable P-ZIS structure. In addition, P-ZIS was observed to experience a reduction in band gap energy, an upshift of valence band maximum (VBM), an increase in electron density near VBM and a reduction of H* adsorption-desorption barrier, all of which are essential for the enhancement of the hydrogen evolution reaction. In overall, detailed theoretical analysis carried out in this work could provide critical insights towards the development of P-ZIS-based photocatalysts for efficient H generation via solar water splitting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817050 | PMC |
http://dx.doi.org/10.1038/s41598-022-05740-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!