Conductive composite fibers containing poly (3,4-ethylenedioxythiophene) (PEDOT) and silver nanoparticles (AgNPs) were fabricated by emulsion electrospinning of 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) in toluene together with aqueous solution of poly (vinyl alcohol) (PVA) and silver nanoparticles (AgNPs) in the presence of sodium dodecylsulfate followed by heat treatment at 70 °C to convert DBEDOT to conductive PEDOT via solid state polymerization (SSP). The composite fibers were characterized by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and thermogravimetric analysis. The PEDOT/PVA/AgNPs composite fibers deposited on a screen-printed carbon electrode (SPCE) surface exhibited good electrochemical response and was applied for simultaneous detection of heavy metal ions in a mixture, namely Zn(II), Cd(II), and Pb(II) via square wave anodic stripping voltammetry (SWASV). With added Bi into the detection system, the bismuth film formed on the electrode allows effective alloy formation with the deposited heavy metals obtained upon reduction of the heavy metal ions, the detection of heavy metal ions after stripping was successfully accomplished with a linear range of 10-80 ppb and limits of detections (LOD) of 6, 3 and 8 ppb for Zn(II), Cd(II), and Pb(II), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!