The composition, energy, and carbon stability characteristics of biochars derived from thermo-conversion of biomass in air-limitation, CO, and N at different temperatures.

Waste Manag

Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China. Electronic address:

Published: March 2022

This study systemically investigated the characteristics of biochars derived from thermo-conversion of pine sawdust and wheat straw in air-limitation, CO, and N atmospheres at the temperatures of 300-750 °C. Meanwhile, their energy and C stability parameters were also evaluated here. The results showed that biochar produced in air-limitation had less yield, fixed C and bulk C, as well as more volatile matter and inorganic elements than that produced in CO and N. Biochars derived from thermo-conversion of pine sawdust in CO and N at 450-750 °C had the greatest energy densification ratios (EDR) (range: 1.40-1.61), because pine sawdust contained more lignin than wheat straw, and the thermo-conversion of lignin in N and CO at 450-750 °C benefited for the formation of fixed C. Recalcitrance potential (R) results showed that the biochars produced in CO and N at 600-750 °C had the highest carbon stability (R: 0.54-0.64) for given biomass, owing to the thermo-conversion of biomass in CO and N at 600-750 °C preferring to form the organic C with high aromaticity and low polarity. Nonetheless, thermo-conversion of biomass in CO and N at 300 °C presented the greatest C sequestration potential, owing to high biochar yields under these conditions. Generally, the temperature-variability for the composition, EDR, and C sequestration potential followed the order: air-limitation > CO > N, whereas carbon stability presented an opposite order. Our results contributed to selecting the appropriate atmosphere to optimize the properties and performances of biochars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.01.038DOI Listing

Publication Analysis

Top Keywords

carbon stability
12
biochars derived
12
derived thermo-conversion
12
thermo-conversion biomass
12
pine sawdust
12
characteristics biochars
8
thermo-conversion pine
8
wheat straw
8
sequestration potential
8
thermo-conversion
6

Similar Publications

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism.

Sci Total Environ

January 2025

Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:

The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.

View Article and Find Full Text PDF

CuSeO@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione.

Talanta

January 2025

International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:

Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).

View Article and Find Full Text PDF

The impact of carbon emissions trading on green total factor productivity based on evidence from a quasi-natural experiment.

Sci Rep

January 2025

Faculty of Social Sciences, University of Lodz, ul. Prez, prez. Gabriela Narutowicza 68, 90-136, Łódź, Poland.

Based on a balanced panel dataset of 272 prefecture-level cities from 2000 to 2022, this paper systematically investigates the impact of the carbon emissions trading system on green total factor productivity and its underlying mechanisms from an integrated perspective of overall, dynamic, and spatial dimensions. The findings reveal that (1) the carbon emissions trading system significantly enhances regional total factor productivity, primarily by optimizing resource allocation efficiency and strengthening regional competitiveness. (2) From a dynamic perspective, the policy effect exhibited a U-shaped relationship: from 2013 to 2018, green total factor productivity was suppressed due to underdeveloped market mechanisms and the policy environment; after 2018, with market maturation and policy stabilization, the policy effects improved significantly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!