Fiber-1 protein (F1) is the structural protein of Fowl Adenovirus serotype 4 (FAdV-4), which could recondite the receptors of host cytomembrane. In this study, we firstly determined that F1 protein located in nucleus of LMH cells after infection with FAdV-4. We additionally revealed that F1 protein had a classic NLS, and the NLS was required for F1 nucleus entry, which was intently associated to the 26th Pro in NLS. The time rule result indicated that some F1 proteins firstly positioned in the nucleus 6 h posttranfection, and it entirely located in the nucleus 12 h posttranfection, then it ordinarily placed in cytoplasm 18 h posttranfection by means of microscopic fluorescence observation and Western Blotting. Then after transfection with pCI-neo-flag-F1 or infection with FAdV-4, the importin alpha 1 was once investigated whether or not it was required for F1 protein nucleus entry through immunofluorescence and/or Co-IP, results demonstrated that the F1 protein and importin alpha 1 co-located in the nucleus 6 h and 12 h posttranfection. The tiers of F1 protein vicinity in nucleus have been additionally investigated after knockdown expression or overexpression of importin alpha 1, and the results further revealed that importin alpha 1 used to be required for F1 protein nucleus entry. Finally, the function of F1 protein nucleus entry was investigated by qPCR, RT-PCR and Western Blotting, and the results revealed that F1 protein nucleus location was conducive to the proliferation of FAdV-4. In summary, we firstly reveal that the F1 protein of FAdV-4 locates in nucleus infected with FAdV-4, and confirm that importin alpha 1 binds to the NLS of F1 protein to nucleus localization, which promotes the proliferation of FAdV-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2022.109351 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan. Electronic address:
Importin α is a crucial player in the nucleocytoplasmic transport of nuclear localization signal (NLS)-containing cargo proteins and is suggested to bind to DNA directly. We hypothesized that importin α, after binding to DNA, may move along DNA via sliding or hopping. We investigated the movement dynamics of importin αs fused to AcGFP along DNA using single-molecule fluorescence microscopy and single-tethered DNA arrays.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
March 2025
Department of Orthopedics, Shenzhen Third People's Hospital, Shenzhen, China.
Osteoporosis is mainly caused by an imbalance in osteoclast and osteoblast regulation, resulting in an imbalance in bone homeostasis. Ginsenoside Rg3 (Rg3) has been reported to have a therapeutic effect on alleviating osteoporosis. Nonetheless, the underlying mechanisms have not been completely elucidated.
View Article and Find Full Text PDFCells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.
View Article and Find Full Text PDFCancer Diagn Progn
January 2025
Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan.
Background/aim: Karyopherin alpha 2 (KPNA2) has been reported to be associated with cancer aggressiveness and treatment resistance via transporting several cargo proteins into the nucleus, such as cancer-promoting E2F and DNA repair-related MRN complex. Recent studies have highlighted the KPNA2 functions in tumorigenesis and the progression of various cancers. However, the importance of KPNA2 expression has yet to be elucidated in clinical neuroblastoma patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!