In this study, two types of biosorbents were used to remove Cs and plutonium isotopes from aqueous solutions - moss (Ptilium crista - castrensis) and oak sawdust (Quercus robur), both in the form of natural and modified state. Sorbent modification significantly increases the sorbent surface area (for moss sorbents - from 4.0 to 47.2 m/g, and for sawdust sorbents - from 1.1 to 26.3 m/g), pore volume (from 10 to 10), concentration and amount of basic cations and anions, as well as active functional groups on the sorbent surface. The main functional groups on the surface of natural sorbents modified with iron hydroxide interacting with analytes are carboxyl and hydroxyl groups. For carbonized sawdust and its subsequent activation with concentrated HCl, in addition to carboxyl and hydroxyl groups, acetyl groups also become active. Carbonated sawdust treated with HCl showed the highest average removal efficiency and sorption capacity for radiocesium and plutonium isotopes in laboratory column experiments - for Cs ∼78.6% and ∼196.6 Bq/g and for Pu ∼83% and ∼41.5 Bq/g, respectively. The moss and moss modified with iron hydroxide also showed good properties of adsorbing plutonium isotopes in field (in-situ) experiments. The best results on the sorption of Cs in field experiments were shown by carbonated sawdust activated with HCl, and for isotopes of plutonium - the raw moss and moss modified with iron hydroxide. The results of the study showed that sorbents can be used not only for purification of water from plutonium isotopes but allow the operational sampling and more accurate measurement of radiocesium and plutonium isotopes in the fresh water reservoirs by the dynamic flow method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2022.106829 | DOI Listing |
Anal Chim Acta
February 2025
Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Marti i Franqués, 1-11, ES-08028, Barcelona, Spain; Serra-Húnter Programme, Generalitat de Catalunya, Barcelona, Spain; Institut de Recerca de l'Aigua, University of Barcelona, Spain. Electronic address:
Background: Analyzing mixtures of radionuclides is a complex task. Two situations are the mixtures of Sr with Sr and Sr with plutonium isotopes. The challenge arises in emergency scenarios resulting from accidents where the activity of Sr is over 20 times higher than that of Sr, complicating its quantification and requiring delayed measurements.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, PR China; Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, PR China. Electronic address:
Radiation risk through seafood consumption is a big public concern under the discharge of nuclear contaminated water. Plutonium is an important radionuclide in view of radiation risk due to its high radiological and chemical toxicity, as well as consistent presence in the environment. The distribution and level of plutonium isotopes (Pu, Pu) in marine biota collected along the coast of China in 2022-2023 were investigated.
View Article and Find Full Text PDFTalanta
January 2025
National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan; Department of Physics, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Natural uranium isotopes have extremely long half-lives; therefore, analytical methods based on the number of atoms, such as X-ray fluorescence (XRF) analysis, are suitable for uranium detection. However, XRF measurements cannot be used to detect the major isotopes of americium when present in amounts barely detectable using radiation measurements, owing to their relatively short half-lives. Because of α-decay-induced internal conversion, where orbital electrons are emitted instead of γ-rays, these nuclides emit characteristic X-rays.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
Xiangya School of Medicine, Central South University, Changsha, China.
This study investigated the potential association between uranium exposure and mortality from cerebrovascular diseases, with a focus on the mediating effects of lipid indicators. Employing recommended sampling weights to account for National Health and Nutrition Examination Survey' complex survey design, this analysis drew from data collected between 2005 and 2016. The study examined the impact of uranium on mortality from cerebrovascular diseases using various statistical approaches, including Cox regression to assess linear relationships within metal mixtures.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Cryoconite is abundant in artificial radionuclides such as plutonium (Pu) and amounts of radioactive contaminants is stored in glaciers. Under global warming and glaciers rapid retreating, glaciers could be a second source for radioactive contaminants and the stored Pu isotopes could be released to the downstream areas through surface runoff. However, the knowledge and understanding on the migration behavior and cycling of Pu isotopes in the ice cap is quite limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!