Background: MicroRNAs (miRNAs) regulate gene expression post-transcriptionally via mRNA degradation. As a result, they have an impact on a variety of pathways in organisms that are important for both health and disease. miRNAs can be used as potential diagnostic, prognostic and therapeutic biomarkers for immune and nervous system-related diseases such as MS.
Method: Differentially expressed miRNAs from peripheral blood samples of patient and control groups were selected from NCBI GEO Datasets using GEO2R. Common miRNAs and their related pathways were analyzed using miRNet, miRWalk, DIANA mirpath, KEGG pathway. Target genes and their protein-protein interactions were also evaluated using STRING and GeneMANIA.
Results: We found 12 common miRNAs, four of which were determined to be more important in MS-related pathways such as the immune and neural signaling networks. These include pathways neurotrophin, JAK-STAT, B cell receptor, ErbB, MAPK, Fc gamma R-mediated phagocytosis, Chemokine and T cell receptor signaling pathways. Moreover, target gene analyses were performed and MAPK1, PIK3CD, PIK3R1, PIK3R2, PIK3R3, PIK3R5, AKT2, SOS2, RAF1 genes were found. Further analysis showed that the identified genes and related pathways have interactions at multiple points, and that the overlapping points are commonly found in the PI3K-Akt signaling pathway.
Conclusion: In this paper, MS-related miRNAs and their potential effects on related pathways were evaluated. This study can be used for understanding MS pathogenesis and provides new tools for the discovery of new therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msard.2022.103642 | DOI Listing |
Mol Psychiatry
January 2025
Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland.
Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally due to HCC late diagnosis and limited treatment options. MiRNAs (miRNAs) emerged as potential biomarkers for various diseases, including HCC. However, the value of miRNA-101 as a serum biomarker for HCV-induced HCC has not been fully investigated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:
MicroRNA (miRNA) imaging in living cells is paramount for comprehending its dynamic functions and profiles, offering valuable insights into miRNA-related cellular processes. However, this remains challenging due to limited transfection agents and the low abundance of miRNAs. Herein, a smart nanosystem was proposed for miRNA imaging in living cells by ingeniously integrating cyclometalated ruthenium (II) nanoparticles (RuNPs) with a catalyzed hairpin assembly (CHA) strategy.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.
Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.
Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!