A number of mutations in the human TBX5 gene have been described which cause Holt-Oram syndrome, a severe congenital disease associated with abnormalities in heart and upper limb development. We have used a prime-editing approach to introduce a patient-specific disease-causing TBX5 mutation (c.920_C > A) into an induced pluripotent stem cell (iPSC) line from a healthy donor. The resulting iPSC line provides a powerful tool to identify and analyze the biological and molecular impact of this specific TBX5 mutation in comparison to the isogenic control iPSC line during cardiac development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2022.102691DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
8
pluripotent stem
8
stem cell
8
patient-specific disease-causing
8
tbx5 gene
8
tbx5 mutation
8
generation crispr/cas
4
crispr/cas edited
4
edited human
4
human induced
4

Similar Publications

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Human neural rosettes secrete bioactive extracellular vesicles enriched in neuronal and glial cellular components.

Sci Rep

January 2025

Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.

Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.

View Article and Find Full Text PDF

CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

Neuron

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease.

View Article and Find Full Text PDF

There is increasing pressure for researchers to reduce their reliance on animals, particularly in early-stage research. The main reason for that change arises from the different biological behavior of humans that leads to frequent failure of translating data from bench to bed. The advent of organoid technology ten years ago, along with the feasibility of obtaining brain organoids in most laboratories, has created considerable expectations not exempting frustration.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!