The increase in intracellular calcium is influenced by cyclic nucleotides (cAMP and cGMP) content, which rating is governed by phosphodiesterases (PDEs) activity.Despite it has been demonstrated a beneficial effect of PDEs inhibitors in different pathological conditions involving SKM, not much is known on the role exerted by cAMP-cGMP/PDEs axis in human SKM contractility. Here, we show that Ssulfhydration of PDEs modulates human SKM contractility in physiological and pathological conditions. Having previously demonstrated that, in the rare human syndrome Malignant Hyperthermia (MH), there is an overproduction of hydrogen sulfide (HS) within SKM contributing to hyper-contractility, here we have used MH negative diagnosed biopsies (MHN) as healthy SKM, and MH susceptible diagnosed biopsies (MHS) as a pathological model of SKM hypercontractility. The study has been performed on MHS and MHN human biopsies after diagnosis has been made and on primary SKM cells derived from both MHN and MHS biopsies. Our data demonstrate that in normal conditions PDEs are S-sulfhydrated in both quadriceps' biopsies and primary SKM cells. This post translational modification (PTM) negatively regulates PDEs activity with consequent increase of both cAMP and cGMP levels. In hypercontractile biopsies, due to an excessive HS content, there is an enhanced Ssulfhydration of PDEs that further increases cyclic nucleotides levels contributing to SKM hyper-contractility. Thus, the identification of a new endogenous PTM modulating PDEs activity represents an advancement in SKM physiopathology understanding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2022.106108DOI Listing

Publication Analysis

Top Keywords

skm
10
cyclic nucleotides
8
camp cgmp
8
pathological conditions
8
human skm
8
skm contractility
8
ssulfhydration pdes
8
diagnosed biopsies
8
primary skm
8
skm cells
8

Similar Publications

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

A simple acetylcholinesterase inhibition assay for the quantification of the nerve agent VX: Application in a Franz cell model with rat skin and various decontaminants.

Toxicol Lett

January 2025

Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, Munich 80937, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestrasse 33, Munich 80336, Germany. Electronic address:

The medical community continues to regard organophosphate nerve agent poisoning as a significant concern. Due to the lack of therapeutic options for the nicotinic signs and symptoms for certain agents (e.g.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.

View Article and Find Full Text PDF

Objectives: To provide information about implementation, resources, practice patterns and prevalent perceptions regarding neuro-oncology tumor boards (NOTBs) in a lower middle income country.

Methods: A nationwide survey was designed to include licensed neurosurgeons involving data on practice, structure, and perceptions of NOTBs with non-probability sampling, a pre-validated proforma, data analysis using SPSS v27, and geospatial mapping using Quantum GIS.

Results: 139 neurosurgeons were surveyed from 63 neurosurgical centers of a lower middle income country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!