Lytic polysaccharide monooxygenases play a unique role in biomass saccharification. A novel gene, PdLPMO9A, from Pleurotus djamor, was reported to be upregulated during the degradation of corn straw in our previous research. However, very little information is available on PdLPMO9A. Therefore, PdLPMO9A was heterologously expressed in Pichia pastoris, and biophysical characterisitics of the recombinant protein PdLPMO9A were investigated; it was shown to have superior thermostability and pH stability. PdLPMO9A markedly improved the cellulase-mediated saccharification of corn straw, when the dosage of PdLPMO9A was 0.66 mg/g corn straw and hydrolysis time was 48 h. When CuSO was added at a concentration of 0.1 mM, glucose yield rose by a further 28.16%. In light of these findings, it was concluded that PdLPMO9A has the potential to function as an essential component of a cellulase cocktail capable of ensuring the saccharification of corn straw biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.126792 | DOI Listing |
J Air Waste Manag Assoc
January 2025
Center for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Australia.
Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.
View Article and Find Full Text PDFImeta
December 2024
Institute of Soil Science, Chinese Academy of Sciences Nanjing China.
Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:
Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China.
Background: The production of D-lactic acid (D-LA) from non-detoxified corn stover hydrolysate is hindered by substrate-mediated inhibition and low cell utilization times. In this study, we developed a novel temperature-sensitive hydrogel, F127-IEA, for efficient D-LA production using a cell-recycle batch fermentation process.
Results: F127-IEA exhibited a porous structure with an average pore size of approximately 1 μm, facilitating the formation of stable clusters within the gel matrix.
Bioresour Technol
December 2024
Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China. Electronic address:
Nanobubbles (NBs) technology has been proven to promote methane production from anaerobic digestion (AD). In this study, the synergistic effects of (CH + CO)-nanobubble water ((CH + CO)-NBW) combined with varying particle sizes of corn straw on the AD were investigated. As findings, adding (CH + CO)-NBW effectively promoted the methane production from AD of corn straw with different particle sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!