Sustainable and cost-effective methods are required to increase the food production and decrease the toxic effects of heavy metals. Most of the agriculture land is contaminated with cadmium (Cd). The present study was designed to minimize the toxic effect of Cd stress (0, 10 and 20 mg kg) on tolerant and sensitive varieties of wheat (Punjab-2011; Sammar) and rice (Kisan Basmati; Chenab) under Zn-lysine (Zn-lys) application as foliar spray (0, 12.5 and 25 mM) and seed priming (0, 3 and 6 ppm). Remarkable decrease was observed in plant growth, physiology and biochemistry as well as increase in Cd uptake, roots to shoots and grains of both crops. Cd significantly reduced the root and shoot lengths, root and shoot dry weights, transpiration rate, photosynthetic rate, stomatal conductance and water use efficiency as well as chlorophyll contents associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA) and HO and Cd uptake in different plant parts including grains of both crop varieties. The foliar application of Zn-lys (0, 12.5 and 25 mM) ameliorated the toxic effect of Cd on growth and physiology associated with decrease in EL, MDA and HO and improved the activities of SOD, POD, CAT and APX enzymes with decreasing Cd uptake in tolerant varieties of wheat and rice as compared to seed priming. Furthermore, it has been investigated that the foliar application of Zn-lys is effective to improve quality of wheat and rice tolerant varieties (Punjab-2011 and Chenab) under Cd contamination soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.133829DOI Listing

Publication Analysis

Top Keywords

varieties wheat
12
wheat rice
12
125 25 mm
8
seed priming
8
growth physiology
8
root shoot
8
foliar application
8
application zn-lys
8
tolerant varieties
8
varieties
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!