A cubic SrTiO (STO) composite material co-doped with Ce and Cr ions was synthesized by solvothermal method. The fully characterized samples were employed as photocatalysts for the oxidation of Hg. The co-doped samples afforded excellent catalytic removal efficiency of 98.99% using UV irradiation and 89.9% using visible light irradiation for Hg compared with the single-doped samples. It was found that co-doped samples had a lower electron-hole recombination rate, largest Brunauer-Emmett-Teller specific surface area, and reduced band gap. The electron spin resonance results revealed that ·O and ·OH were the main active species in the catalytic process. Moreover, the co-doped samples exhibited the best electron transfer rate and the highest photocurrent response intensity. The electron transfer between the elements in the co-doped sample enables it to achieve stable and efficient catalytic performance. In addition, even after five consecutive catalytic runs, the co-doped sample maintained high catalytic activity. This work highlights the potential of the perovskite-type STO materials in the photocatalytic oxidation of gaseous mercury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.133828 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:
To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.
Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Applied Physics, Delhi Technological University, New Delhi, 110 042, India.
Dy and Eu co-doped borosilicate glasses have been synthesised via melt quench technique. Amorphous behaviour of the sample has been verified by XRD study. FT-IR analysis confirmed the presence of various bonds in the host lattice.
View Article and Find Full Text PDFSci Rep
January 2025
Department, School of Chips, Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, 215400, China.
The widespread discharge of organic dyes into the wastewater from various industrial processes has develop a major environmental apprehension in the modern world. To tackle such environmental issues, we are synthesizing a novel catalyst of composition, BaCoDyFeO (x = y = 0.02-0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, PR China; School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, PR China. Electronic address:
Nowadays, the limited electronic conductivity and structural deterioration during battery cycling have hindered the widespread application of NaV(PO) (NVP). In response to these challenges, we advocate for a technique involving the application of carbon modifications to NVP to enhance its suitability as cathode material. This work involves the synthesis of N/Cl co-modified in situ carbon coatings derived from clozapine (CZP) through a facile hydrothermal route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!