Background: Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management. In this context, we have developed the self-assembling protein nanotoxins T22-PE24-H6 and T22-DITOX-H6, which incorporate the de-immunized catalytic domain of Pseudomonas aeruginosa (PE24) exotoxin A and the diphtheria exotoxin (DITOX) domain, respectively. Both nanotoxins contain the T22 peptide ligand to specifically target CXCR4-overexpressing HNSCC cells. In this study, we evaluate the potential use of T22-PE24-H6 and T22-DITOX-H6 nanotoxins for the treatment of HNSCC.

Methods: T22-PE24-H6 and T22-DITOX-H6 CXCR4-dependent cytotoxic effect was evaluated in vitro in two different HNSCC cell lines. Both nanotoxins cell death mechanisms were assessed in HNSCC cell lines by phase-contrast microscopy, AnnexinV/ propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and western blotting. Nanotoxins antitumor effect in vivo was studied in a CXCR4 HNSCC subcutaneous mouse model. Immunohistochemistry, histopathology, and toxicity analyses were used to evaluate both nanotoxins antitumor effect and possible treatment toxicity. GSMDE and CXCR4 expression in HNSCC patient tumor samples was also assessed by immunohistochemical staining.

Results: First, we found that both nanotoxins exhibit a potent CXCR4-dependent cytotoxic effect in vitro. Importantly, nanotoxin treatment triggered caspase-3/Gasdermin E (GSDME)-mediated pyroptosis. The activation of this alternative cell death pathway that differs from traditional apoptosis, becomes a promising strategy to bypass therapy resistance. In addition, T22-PE24-H6 and T22-DITOX-H6 displayed a potent antitumor effect in the absence of systemic toxicity in a CXCR4 subcutaneous HNSCC mouse model. Lastly, GSDME was found to be overexpressed in tumor tissue from HNSCC patients, highlighting the relevance of this strategy.

Conclusions: Altogether, our results show that T22-PE24-H6 and T22-DITOX-H6 represent a promising therapy for HNSCC patients. Remarkably, this is the first study showing that both nanotoxins are capable of activating caspase-3/GSDME-dependent pyroptosis, opening a novel avenue for HNSCC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815235PMC
http://dx.doi.org/10.1186/s13046-022-02267-8DOI Listing

Publication Analysis

Top Keywords

t22-pe24-h6 t22-ditox-h6
20
hnscc patients
12
hnscc
11
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
therapy resistance
8
nanotoxins
8
cxcr4-dependent cytotoxic
8

Similar Publications

Potent Anticancer Activity of CXCR4-Targeted Nanostructured Toxins in Aggressive Endometrial Cancer Models.

Cancers (Basel)

December 2022

Oncogenesis and Antitumor Drugs Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain.

Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy.

View Article and Find Full Text PDF

CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma.

J Exp Clin Cancer Res

February 2022

Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain.

Background: Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!