AI Article Synopsis

  • Nitrogen fixation is essential for ocean productivity, but the specific factors controlling it are not well understood.
  • Research in the tropical western North Pacific shows a strong link between nitrogen-fixing organisms and the ratio of iron to nitrogen in ocean water.
  • Findings suggest that as the iron:nitrogen supply ratio increases, nitrogen fixation rates rise while phosphate levels drop, indicating a shift from iron to phosphate limitation, particularly in the northern South China Sea.

Article Abstract

Nitrogen fixation is critical for the biological productivity of the ocean, but clear mechanistic controls on this process remain elusive. Here, we investigate the abundance, activity, and drivers of nitrogen-fixing diazotrophs across the tropical western North Pacific. We find a basin-scale coherence of diazotroph abundances and N fixation rates with the supply ratio of iron:nitrogen to the upper ocean. Across a threshold of increasing supply ratios, the abundance of genes and N fixation rates increased, phosphate concentrations decreased, and bioassay experiments demonstrated evidence for N fixation switching from iron to phosphate limitation. In the northern South China Sea, supply ratios were hypothesized to fall around this critical threshold and bioassay experiments suggested colimitation by both iron and phosphate. Our results provide evidence for iron:nitrogen supply ratios being the most important factor in regulating the distribution of N fixation across the tropical ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816331PMC
http://dx.doi.org/10.1126/sciadv.abl7564DOI Listing

Publication Analysis

Top Keywords

supply ratios
12
nitrogen fixation
8
fixation tropical
8
tropical western
8
western north
8
north pacific
8
fixation rates
8
bioassay experiments
8
iron phosphate
8
fixation
6

Similar Publications

Will vegetation restoration affect the supply-demand relationship of water yield in an arid and semi-arid watershed?

Sci Total Environ

January 2025

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.

Natural processes, combined with human activities, determine the inherent quality of regional water supply and demand. However, the interaction between artificial vegetation restoration and water supply-demand dynamics remains insufficiently understood, particularly in arid and semi-arid regions. This study focuses on the Jinghe River Basin (JRB) in the central Loess Plateau, aiming to investigate the changes in supply and demand of ecosystem water yield services and analyze factors affecting the water supply-demand relationship during the vegetation restoration, using the InVEST model, scenario analysis, and the Geodetector.

View Article and Find Full Text PDF

Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).

Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

Analysis of the spatiotemporal trends of urban scale and urban vitality on ecosystem services balance provides an essential basis for regional sustainable development. This study employs the Spatial Durbin Model (SDM), Spatial Autoregressive Model (SAR), and Geographically and Temporally Weighted Regression (GTWR) to effectively capture spatiotemporal associations between urban scale, urban vitality, and ecosystem services supply-demand balance, providing a detailed view of regional variations. The integrated framework combines spatiotemporal analysis, predictive scenario simulation, and importance-performance analysis to quantify and strategize urban impacts on ESs.

View Article and Find Full Text PDF

Cassava (Manihot esculenta Crantz) is a crucial crop in tropics and subtropics, primarily cultivated for its tuber. However, its foliage is rich in protein and can supply essential elements for ruminants. The objective of this study was to evaluate the phytochemical compounds by Gas chromatography-MS (GC-MS) and the main phenolic by High Pressure Liquid Chromatography (HPLC) present in cassava foliage, along with the fermentation pattern using a semi-automated gas production (GP) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!