The excited-state proton transfer (ESPT) of a cationic superphotoacid, -methyl-7-hydroxyquinolium, was studied within the water pool of an anionic aerosol-OT (AOT), bis(2-ethylhexyl) sulfosuccinate, reverse micelle (RM). Previously, we had found that the cationic photoacid residing at the anionic AOT interface was conducive to ESPT to the bound water having concentric heterogeneity on the time scale of hundreds of picoseconds to nanoseconds. In our present study, on the time scale of hundreds of femtoseconds to a few tens of picoseconds, the photoacid underwent an ultrafast ESPT influenced by mobile water constituting the core of the RM. The two subpopulations of the core water molecules that determine the ultrafast biphasic deprotonation of the photoacid on time scales differing by an order of magnitude were identified. The core water molecules solvating the counteranion of the photoacid showed a higher basicity than typical water clusters in bulk resulting in ESPT on a subpicosecond time scale. Bare water clusters sensed by the photoacid showed a slower ESPT, over several picoseconds, as typically limited by the rotational motion of water molecules for similar types of the photoacid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c09070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!