Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, a facile macro- and microporous polycaprolactone/duck's feet collagen scaffold (PCL/DC) was fabricated and characterized to confirm its applicability in bone tissue engineering. A biomimetic scaffold for bone tissue engineering and regeneration for bone defects is an important element. PCL is a widely applied biomaterial for bone tissue engineering due to its biocompatibility and biodegradability. However, the high hydrophobicity and low cell attachment site properties of PCL lead to an insufficient microenvironment in designing a scaffold. Collagen is a nature-derived biomaterial that is widely used in tissue engineering and has excellent biocompatibility, mechanical properties, and cell attachment moieties. Among the resources from which collagen can be obtained, DC contains a high amount of collagen type I (COL1), is biocompatible, and is cost-effective. In this study, the scaffolds were fabricated by blending DC with PCL in various ratios and applied non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS), solvent casting and particulate leaching (SCPL), and gas foaming method to fabricate macro- and microporous structure. The characterization of the fabricated scaffolds was carried out by morphological analysis, bioactivity test, physicochemical analysis, and mechanical test. study was carried out by viability test, morphology observation, and gene expression. The results showed that the incorporation of DC enhances the physicochemical and mechanical properties of the scaffolds. Also, a large amount of bone mimetic apatite was formed according to the DC content in the bioactivity test. The study showed that the PCL/DC scaffold is biocompatible and the existence of apatite and DC formed a favorable microenvironment for cell proliferation and differentiation. Overall, the novel porous PCL/DC scaffold can be a promising biomaterial model for bone tissue engineering and regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2036933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!