Upper limb myoelectric prosthetic control is an essential topic in the field of rehabilitation. The technique controls prostheses using surface electromyogram (sEMG) and intramuscular EMG (iEMG) signals. EMG signals are extensively used in controlling prosthetic upper and lower limbs, virtual reality entertainment, and human-machine interface (HMI). EMG signals are vital parameters for machine learning and deep learning algorithms and help to give an insight into the human brain's function and mechanisms. Pattern recognition techniques pertaining to support vector machine (SVM), k-nearest neighbor (KNN) and Bayesian classifiers have been utilized to classify EMG signals. This paper presents a review on current EMG signal techniques, including electrode array utilization, signal acquisition, signal preprocessing and post-processing, feature selection and extraction, data dimensionality reduction, classification, and ultimate application to the community. The paper also discusses using alternatives to EMG signals, such as force sensors, to measure muscle activity with reliable results. Future implications for EMG classification include employing deep learning techniques such as artificial neural networks (ANN) and recurrent neural networks (RNN) for achieving robust results.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09544119221074770DOI Listing

Publication Analysis

Top Keywords

emg signals
16
upper limb
8
pattern recognition
8
deep learning
8
neural networks
8
emg
7
signals
5
review electromyography
4
electromyography based
4
based intention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!