Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The research considers the impact of genotype-inferred variability on blood levels of amitriptyline and its main metabolites, as may be moderated by phenocopying. and genotypes, and serum concentrations of amitriptyline, nortriptyline and hydroxymetabolites, were determined in 33 outpatients. Co-medications were reviewed to identify CYP inhibition risk. CYP2C19 metabolizer status explained interpatient variation in nortriptyline to amitriptyline concentration ratios. The hydroxymetabolite to parent ratios increased with higher CYP2D6 activity scores and lower CYP2D6 inhibition risk. In patients at high CYP2D6 inhibition risk, the amitriptyline + nortriptyline concentration was, on average, 52% above the higher end of expected ranges. Practical construal of pharmacogenetics and drug interactions tantamount to aberrant metabolism can facilitate patient-tailored use of the established drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/pme-2021-0022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!