The ultrafast relaxation pathways in a hexaiodide bismuth(III) complex, BiI, excited at 530 nm in acetonitrile solution are studied by means of femtosecond transient absorption spectroscopy supported by steady-state absorption/emission measurements and DFT computations. Radiationless relaxation out of the Franck-Condon, largely metal-centered (MC) triply degenerate T state (46 ± 19 fs), is driven by vibronic coupling due to the Jahn-Teller effect in the excited state. The relaxation populates two lower-energy states: a ligand-to-metal charge transfer (LMCT) excited state of π I(5p) → Bi(6p) nature and a luminescent "trap" A(P) MC state. Coherent population transfer from the initial T into the π LMCT state occurs in an oscillatory, stepwise manner at ∼190 and ∼550 fs with a population ratio of ∼4:1. The π LMCT state decays with a 2.9 ps lifetime, yielding two short-lived reaction intermediates of which the first one reforms the parent ground state with a 15 ps time constant, and the second one decays on a ∼5 ps timescale generating the triplet product species, which persists to the longest 2 ns delay times investigated. This product is identified as the η metal-ligated diiodide-bismuth adduct with the intramolecularly formed I-I bond, [(η-I)Bi()I], which is the species of interest for solar energy conversion and storage applications. The lifetime of the "trap" A state is estimated to be 13 ns from the photoluminescence quenching of BiI. The findings give insight into the excited-state relaxation dynamics and the photochemical reaction mechanisms in halide complexes of heavy s metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c10350 | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).
View Article and Find Full Text PDFMed Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!