Much like nails that are hammered into wood, the beaks of woodpeckers regularly get stuck upon impact. A kinematic video analysis of pecking by black woodpeckers shows how they manage to quickly withdraw their beaks, revealing a two-phase pattern: first a few degrees of beak-tip-down rotation about the nasofrontal hinge causes the tip of the upper beak to be retruded while its proximal end is lifted. Next, the head is lifted, causing beak-tip-up rotation about the nasofrontal hinge while the lower beak starts retruding and initiates the final freeing. We hypothesise that these consecutive actions, taking place in about 0.05 s, facilitate beak retraction by exploiting the presumably low frictional resistance between the upper and lower beak keratin surfaces, allowing them to slide past each other. It also demonstrates the counter-intuitive value of maintaining cranial kinesis in a species adapted to deliver forceful impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.243787 | DOI Listing |
Proc Biol Sci
February 2024
Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK.
In birds, the quadrate connects the mandible and skull, and plays an important role in cranial kinesis. Avian quadrate morphology may therefore be assumed to have been influenced by selective pressures related to feeding ecology, yet large-scale variation in quadrate morphology and its potential relationship with ecology have never been quantitatively investigated. Here, we used geometric morphometrics and phylogenetic comparative methods to quantify morphological variation of the quadrate and its relationship with key ecological features across a wide phylogenetic sample.
View Article and Find Full Text PDFJ Anat
June 2024
Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.
Premaxillary protrusion and the performance advantages it confers are implicated in the success of diverse lineages of teleost fishes, such as Cypriniformes and Acanthomorpha. Although premaxillary protrusion has evolved independently at least five times within bony fishes, much of the functional work investigating this kinesis relates to mechanisms found only in these two clades. Few studies have characterized feeding mechanisms in less-diverse premaxilla-protruding lineages and fewer yet have investigated the distinctive anatomy underlying jaw kinesis in these lineages.
View Article and Find Full Text PDFAnat Rec (Hoboken)
April 2024
Funktionelle Morphologie im Anatomischen Institut, Ruhr-Universität Bochum, Bochum, Germany.
The complex constructions of land vertebrate skulls have inspired a number of functional analyses. In the present study, we provide a basic view on skull biomechanics and offer a framework for more general observations using advanced modeling approaches in the future. We concentrate our discussion on the cranial openings in the temporal skull region and work out two major, feeding-related factors that largely influence the shape of the skull.
View Article and Find Full Text PDFJ Exp Biol
December 2023
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
Prokinesis, a mode of avian cranial kinesis involving motion between the neurocranium and upper beak, has long been investigated in biomechanical analyses of avian feeding and drinking. However, the modern avian beak is also used for non-feeding functions. Here, we investigate the dual function of prokinesis in the feeding and locomotor systems of the rosy-faced lovebird (Agapornis roseicollis).
View Article and Find Full Text PDFBiol Lett
June 2023
Laboratory of Functional Morphology, Department of Biology, University of Antwerp, 2610 Antwerpen, Belgium.
The value of birds' ability to move the upper beak relative to the braincase has been shown in vital tasks like feeding and singing. In woodpeckers, such cranial kinesis has been thought to hinder pecking as delivering forceful blows calls for a head functioning as a rigid unit. Here, we tested whether cranial kinesis is constrained in woodpeckers by comparing upper beak rotation during their daily activities such as food handling, calling and gaping with those from closely related species that also have a largely insectivorous diet but do not peck at wood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!