The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides and identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike protein of SARS-Co-V2 and a universal T-helper epitope PADRE assembled on the DNA scaffold. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against SARS-CoV-2 wild type and its variants of concerns (VOC). This newly designed peptide nanoarray scaffold vaccine is useful in controlling virus transmission in immunocompromised individuals, as well as individuals who are prone to vaccine-induced adverse reactions. Given that the immunogen is modular, epitopes or immunomodulatory ligands can be easily introduced in order to tailor the vaccine to the recipient. This also allows the already developed vaccine to be modified rapidly according to the identified mutations of the virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811944PMC
http://dx.doi.org/10.21203/rs.3.rs-1206402/v1DOI Listing

Publication Analysis

Top Keywords

peptide nanoarray
8
nanoarray scaffold
8
vaccine
8
scaffold vaccine
8
variants concerns
8
vaccine development
8
development strategies
8
immunocompromised individuals
8
vaccine sars-cov-2
4
sars-cov-2 variants
4

Similar Publications

A novel photoelectrochemical (PEC) sensor for the detection of microcystic toxins (MC-LR) was developed on the basis of signal-sensitive change strategy. NiO nanoarray as a basic photoactive material was grown directly on the ITO glass electrode via calcination after hydrothermal reaction, while dye N719 was used to sensitize the electrode for enhancing visible light absorption, and the first signal-on stage was obtained. In the meantime, p-type CuO was applied as the signal probe attached to probe DNA (DNA) to improve the sensitivity, and the second "signal-on" stage appeared because of its synergistic effect with NiO nanoarrays.

View Article and Find Full Text PDF

The fabrication of ordered nanoarray electrode (NAE) using UV imprinting and their application as electrochemical (EC) immunosensor is described in this study. Especially, the influence of the array density factors on the performance of NAE was characterized electrochemically and compared with flat-electrode. Low-density (hole: 200 nm, hole space = 600 nm), medium-density (hole: 200 nm, hole space = 400 nm), and high-density NAE (hole: 200 nm, hole space = 200 nm) which have the same active area were fabricated and their redox cycling was compared with empirical results.

View Article and Find Full Text PDF

Nanofluidic Aptamer Nanoarray to Enable Stochastic Capture of Single Proteins at Normal Concentrations.

Small

October 2023

Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.

Single-molecule experiments allow understanding of the diversity, stochasticity, and heterogeneity of molecular behaviors and properties hidden by conventional ensemble-averaged measurements. They hence have great importance and significant impacts in a wide range of fields. Despite significant advances in single-molecule experiments at ultralow concentrations, the capture of single molecules in solution at normal concentrations within natural biomolecular processes remains a formidable challenge.

View Article and Find Full Text PDF

Modular nanoarray vaccine for SARS-CoV-2.

Nanomedicine

November 2022

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target.

View Article and Find Full Text PDF

RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells.

ACS Appl Mater Interfaces

August 2022

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!