Role of microenvironmental acidity and tumor exosomes in cancer immunomodulation.

Transl Cancer Res

Deparment of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy.

Published: September 2020

Tumor microenvironment (TME) is a complex milieu in which tumor grows, develops and progresses through a complex bi-directional cross-talk with immune-, stromal cells, and the extracellular matrix (ECM). In this context, tumor-derived exosomes (TE) drive the fate of tumor cells through a stimulatory or inhibitory role on immune system. In fact, TE can induce the apoptosis of cells of the immune surveillance, and enhance the proliferation and survival of stromal cells that sustain tumor development. However, depending on the molecular cargo, TE are also able to stimulate anti-tumor immune response. TME is mainly characterized by the acidic pH that contributes to tumor development, through multiple mechanisms. Among these, the impairment of tumor immune surveillance does occur within acidic TME, and is directly mediated by acidic pH or by molecular cargo carried by TE. Little is known about the role of TE in immunomodulation in acidic conditions. The present review summarizes the studies describing the role of microenvironmental acidity and TE in immune system modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798230PMC
http://dx.doi.org/10.21037/tcr.2020.03.69DOI Listing

Publication Analysis

Top Keywords

role microenvironmental
8
microenvironmental acidity
8
stromal cells
8
immune system
8
immune surveillance
8
tumor development
8
molecular cargo
8
tumor
7
immune
5
role
4

Similar Publications

The anti-melanoma roles and mechanisms of tricholoma isoflavone derivative CA028.

NPJ Sci Food

January 2025

Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.

As a form of skin cancer, melanoma's incidence rate is continuing to rise globally. Therefore, there is an urgent need to find new agents to improve survival in melanoma patients. Isoflavones, a class of phytoestrogens, are primarily found in soy and other legumes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a histologically heterogeneous disease with variable clinical outcome. The role the tumour microenvironment (TME) plays in determining tumour progression is complex and not fully understood. To improve our understanding, it is critical that the TME is studied systematically within clinically annotated patient cohorts with long-term follow-up.

View Article and Find Full Text PDF

TBK1 Targeting Is Identified as a Therapeutic Strategy to Enhance CAR T-Cell Efficacy Using Patient-Derived Organotypic Tumor Spheroids.

Cancer Immunol Res

January 2025

Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.

View Article and Find Full Text PDF

[The impact of mitochondrial transfer on leukemia progression].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.

View Article and Find Full Text PDF

Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance.

Pharmaceutics

December 2024

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!