Background: Beta-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) was reported to play an important role in the development of the central nervous systems. We found higher expression of B4GALNT1 in oral squamous cell carcinoma (OSCC) tissues compared to the paired normal adjacent tissues in the TCGA database. This study aimed to investigate whether there was a potential relationship between B4GALNT1 and OSCC tumorigenesis and further explored the possible regulation mechanism.

Methods: Gene expression level was analyzed by means of real-time quantitative PCR and further cell function experiments were performed including cell proliferation and apoptosis test, cell cycle distribution detection after silencing B4GALNT1 by transfection with B4GALNT1-shRNA lentivirus. Western Blotting was carried out to explore the possible molecular mechanism.

Results: The present study confirmed the overexpression of B4GALNT1 in OSCC. Compared to the control group, cell proliferation after silencing B4GALNT1 was significantly inhibited and cell apoptosis percentage was significantly higher. Besides, the knockdown of B4GALNT1 resulted in cell cycle arrest at G1 phase in our experiment.

Conclusions: B4GALNT1 enhances the proliferation and suppress the apoptosis of OSCC cells probably through JNK and p38 signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799079PMC
http://dx.doi.org/10.21037/tcr.2020.03.73DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
b4galnt1
9
cell
9
b4galnt1 enhances
8
oral squamous
8
squamous cell
8
cell carcinoma
8
b4galnt1 oscc
8
cell cycle
8
silencing b4galnt1
8

Similar Publications

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!