Background: Emodin, extracted from the rhizomes of various Chinese herbs, is a natural anthraquinone derivative with the formula C15H10O5. Many recent studies have shown that emodin has an antitumour effect. In this study, emodin was investigated in vitro to observe its effect on the proliferation, migration, and apoptosis of the B16F10 melanoma cell line.

Methods: B16F10 cells were treated with 20, 40, 60, or 80 µM emodin for 24 h. A Cell Counting Kit-8 (CCK-8) was used to measure the effect of emodin on cell proliferation. After 24 h of emodin treatment, a scratch test was used to detect the wound healing rate of each group. A Transwell test was used to measure the effect of emodin on cell migration ability. The apoptosis rate of the B16F10 cells was determined by a TUNEL assay. The expression of caspase-3 was measured by western blot analysis.

Results: Compared with the control group, emodin significantly inhibited the proliferation and migration of the B16F10 cells in a concentration-dependent manner. Emodin also inhibited the migration of the B16F10 cells and induced their apoptosis.

Conclusions: Emodin can effectively suppress the viability and migration of B16F10 cells and may induce apoptosis through the mitochondrial pathway or death receptor-mediated pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799178PMC
http://dx.doi.org/10.21037/tcr-20-1040DOI Listing

Publication Analysis

Top Keywords

b16f10 cells
24
migration b16f10
16
proliferation migration
12
emodin cell
12
emodin
11
measure emodin
8
emodin inhibited
8
b16f10
7
migration
6
cells
6

Similar Publications

The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming Mag for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, Mag could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy.

View Article and Find Full Text PDF

Carbonic Anhydrase IX Targeted Polyaspartamide fluorescent Probes for Tumor imaging.

Int J Nanomedicine

January 2025

College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.

Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.

View Article and Find Full Text PDF

Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models.

Bioinorg Chem Appl

January 2025

Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.

The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.

View Article and Find Full Text PDF

Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs).

View Article and Find Full Text PDF

PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol

January 2025

Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.

Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!