Background: Cancer stem cells (CSCs) are the tumor cell of origin with self-renewing ability and multi-differentiation potency. CSCs can play vital roles in gastric cancer (GC) metastasis and relapse. However, the genes that regulate the stemness maintenance of CSCs in GC patients remain largely unknown. In the present study, we sought to determine the key genes associated with stemness in GC patients.

Methods: mRNA expression-based stemness index (mRNA SI) was analyzed with regard to the differential expression levels between normal and GC tissues, as well as clinical features and survival outcomes. Weighted gene co-expression network analysis (WGCNA) was performed to identify modules of interest and key genes. The differences in mRNA expression of key genes between normal and GC tissues were calculated by "ggpubr" package in R. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were carried out to annotate the function of key genes. Protein-protein interaction (PPI) and gene co-expression analyses were conducted using STRING and "corrplot" package in R, respectively.

Results: mRNA SI score was markedly increased in GC tumor compared to normal tissues. High mRNA SI score was remarkably associated with more advanced tumor stage and higher pathologic grade, but longer survival times. Based on the results of WGCNA, 19 key genes (i.e., ) were identified. GO and KEGG functional analyses revealed that these 19 key genes were mainly related to cell proliferation. From PPI and gene co-expression analyses, these 19 key genes were discovered to be intensively associated with each other at both protein and transcription levels.

Conclusions: our study identified 19 key genes that play vital roles in the stemness maintenance of CSCs in GC patients. Targeting these key genes may help to control CSC characteristics in GC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8797465PMC
http://dx.doi.org/10.21037/tcr-20-704DOI Listing

Publication Analysis

Top Keywords

key genes
40
genes
12
normal tissues
12
gene co-expression
12
key
10
cancer stem
8
gastric cancer
8
play vital
8
vital roles
8
stemness maintenance
8

Similar Publications

Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.

A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways.

View Article and Find Full Text PDF

Short-Chain Chlorinated Paraffins May Induce Ovarian Damage in Mice via AIM2- and NLRP12-PANoptosome.

Environ Sci Technol

January 2025

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China.

Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.

View Article and Find Full Text PDF

A Missense Variant in the IKZF2 Gene Identified in a Genetically Undiagnosed Family With Hearing Loss.

Am J Med Genet A

January 2025

Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China.

Hearing loss is one of the conditions characterized by a high degree of genetic heterogeneity, and whole exome sequencing (WES) serves as a key method for identifying pathogenic variants. To date, 155 genes have been reported to be associated with nonsyndromic hearing loss. Recently, a study by Velde et al.

View Article and Find Full Text PDF

A novel BLK heterozygous mutation (p.Met121lle) in maturity-onset diabetes mellitus: A case report and literature review.

Diabet Med

January 2025

Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.

Maturity onset diabetes of the young (MODY) is a highly heterogeneous monogenic disease that occurs due to β-cell dysfunction. It is divided into different types depending on the gene mutated, and a total of 16 genes have been found to be associated with MODY. However, due to the current lack of understanding of monogenic diabetes, 90% of MODY is currently misdiagnosed and ignored in clinical practice.

View Article and Find Full Text PDF

Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!