may serve as a critical gene in the immune microenvironment of breast cancer.

Transl Cancer Res

Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China.

Published: March 2021

Background: Breast cancer (BC), a very heterogeneous systemic disease, is the most frequently seen malignancy in women, especially in some developed countries or regions. Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki67 have been extensively used to predict the clinical outcome, but it is still a hotspot to search for more predictive prognostic markers. Ankyrin repeat and death domain containing 1A (ANKDD1A), which contains nine ankyrin repeats, has been discovered to play a role of tumor suppressor in glioblastoma multiforme (GBM). However, its role in BC remains unknown so far.

Methods: ANKDD1A expression and clinical information of BC were extracted from the TCGA dataset. Then, the ANKDD1A expression level was explored in BC from different perspectives, including clinical stage, molecular subtype, histology type and immune microenvironment. Afterwards, functional enrichment analysis of ANKDD1A co-expressed genes was carried out to estimate the role of ANKDD1A in BC, and the methylation status of ANKDD1A was evaluated by MEXPRESS. In addition, the correlation of ANKDD1A with immunocytes was explored, and survival analysis was carried out to evaluate the prognostic value of ANKDD1A in BC.

Results: ANKDD1A decreased in BC compared with the para-cancerous tissues. Additionally, ANKDD1A was up-regulated in early-stage BC, ER negative group, infiltrating lobular carcinoma, and the normal subtype in BC molecular subtypes. According to functional enrichment analysis, ANKDD1A co-expressed genes were mainly involved in the immune process. Also, our results revealed that ANKDD1A was tightly associated with T cells. Survival analysis suggested that, patients with higher ANKDD1A expression had more favorable prognosis than those with lower ANKDD1A expression.

Conclusions: ANKDD1A may serve as a critical gene in the pathogenesis of BC and the immune microenvironment of BC tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8798465PMC
http://dx.doi.org/10.21037/tcr-20-2685DOI Listing

Publication Analysis

Top Keywords

ankdd1a
15
immune microenvironment
12
ankdd1a expression
12
serve critical
8
critical gene
8
breast cancer
8
functional enrichment
8
enrichment analysis
8
analysis ankdd1a
8
ankdd1a co-expressed
8

Similar Publications

may serve as a critical gene in the immune microenvironment of breast cancer.

Transl Cancer Res

March 2021

Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China.

Background: Breast cancer (BC), a very heterogeneous systemic disease, is the most frequently seen malignancy in women, especially in some developed countries or regions. Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki67 have been extensively used to predict the clinical outcome, but it is still a hotspot to search for more predictive prognostic markers. Ankyrin repeat and death domain containing 1A (ANKDD1A), which contains nine ankyrin repeats, has been discovered to play a role of tumor suppressor in glioblastoma multiforme (GBM).

View Article and Find Full Text PDF

Background: Statins are widely prescribed to lower plasma low-density lipoprotein cholesterol levels. Though statins reduce cardiovascular disease risk overall, statin efficacy varies, and some people experience adverse side effects while on statin treatment. Statins also have pleiotropic effects not directly related to their cholesterol-lowering properties, but the mechanisms are not well understood.

View Article and Find Full Text PDF

Identification of key genes in invasive clinically non-functioning pituitary adenoma by integrating analysis of DNA methylation and mRNA expression profiles.

J Transl Med

December 2019

Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, 100070, China.

Background: Tumor surrounding the internal carotid artery or invading to the cavernous sinus is an important characteristic of invasive pituitary adenoma, and a pivotal factor of tumor residue and regrowth. Without specific changes in serum hormone related to the adenohypophyseal cell of origin, clinically non-functioning pituitary adenoma is more likely to be diagnosed at invasive stages compared with functioning pituitary adenoma. The underlying mechanism of tumor invasion remains unknown.

View Article and Find Full Text PDF

Lower grade gliomas are invasive brain tumors that are difficult to completely resect neurosurgically. They often recur following resection and progress, resulting in death. Although previous studies have shown that specific germline variants increase the risk of tumor formation, no previous study has screened many germline variants to identify variants predictive of survival in patients with glioma.

View Article and Find Full Text PDF

Ectopic epigenetic mechanisms play important roles in facilitating tumorigenesis. Here, we first demonstrated that ANKDD1A is a functional tumor suppressor gene, especially in the hypoxia microenvironment. ANKDD1A directly interacts with FIH1 and inhibits the transcriptional activity of HIF1α by upregulating FIH1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!