A variety of scintigraphic techniques has been added to the gastroenterologist's armamentarium for the evaluation of motor dysfunction of the upper gastrointestinal tract and hepatobiliary tree. These methods include: esophageal transit scintigraphy for the measurement and quantitation of aboral movement of liquids through the esophagus, and for the measurement of esophageal clearance; gastroesophageal reflux scintigraphy for the detection and quantitation of gastroesophageal reflux, gastric scintigraphy for the physiological measurement of the simultaneous rates of emptying of liquids and solids from the stomach; hepatobiliary scintigraphy for the detection of acute cholecystitis, biliary tract obstruction, bile leaks; and enterogastric reflux scintigraphy for the detection and quantitation of bile reflux from the small bowel into the stomach. Each of these methods is relatively physiologic in comparison to other modalities in that none requires intubation or other nonphysiologic maneuvers. Each offers the practicing internist, surgeon, and gastrointestinal physiologist, the ability to measure normal and abnormal function in patients. Because of the low radiation burdens involved and high patient acceptance, these methods are suitable for serial studies in the same patient, particularly before and after the application of various therapeutic modalities.
Download full-text PDF |
Source |
---|
EJNMMI Phys
January 2025
Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.
View Article and Find Full Text PDFClin Exp Metastasis
January 2025
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
Oligorecurrent prostate cancer (PCa) can be treated with metastasis-directed therapy (MDT), which may be performed using radioguided surgery (RGS) as an experimental approach. These procedures have shown promising outcomes, largely due to the high lesion detection rate of positron emission tomography/computed tomography (PET/CT). We present a case series of patients who underwent RGS following robot-assisted radical prostatectomy (RARP).
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.
Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.
Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.
R I Med J (2013)
February 2025
Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence RI.
Cardiac amyloidosis (CA) is an infiltrative disease that results from the deposition of amyloid fibrils in the myocardium, resulting in restrictive cardiomyopathy. The amyloid fibrils are predominantly derived from two parent proteins, immunoglobulin light chain (AL) and transthyretin (ATTR), and ATTR is further classified into hereditary (ATTRv) and wild-type (ATTRwt) based on the presence or absence, respectively, of a mutation in the transthyretin gene. Once thought to be a rare entity, CA is increasingly recognized as a significant cause of heart failure due to improved clinical awareness and better diagnostic imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!