SARS-CoV-2 is a novel virus, responsible for causing the COVID-19 pandemic that has emerged as a pandemic in recent years. Humans are becoming infected with the virus. In 2019, the city of Wuhan reported the first-ever incidence of COVID-19. COVID-19 infected people have symptoms that are related to pneumonia, and the virus affects the body's respiratory organs, making breathing difficult. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) kit is used to diagnose the disease. Due to a shortage of kits, suspected patients cannot be treated promptly, resulting in disease spread. To develop an alternative, radiologists looked at the changes in radiological imaging, like CT scans, that produce comprehensive pictures of the body of excellent quality. The suspected patient's computed tomography (CT) scan is used to distinguish between a healthy individual and a COVID-19 patient using deep learning algorithms. A lot of deep learning methods have been proposed for COVID-19. The proposed work utilizes CNN architectures like VGG16, DeseNet121, MobileNet, NASNet, Xception, and EfficientNet. The dataset contains 3873 total CT scan images with "COVID" and "Non-COVID." The dataset is divided into train, test, and validation. Accuracies obtained for VGG16 are 97.68%, DenseNet121 is 97.53%, MobileNet is 96.38%, NASNet is 89.51%, Xception is 92.47%, and EfficientNet is 80.19%, respectively. From the obtained analysis, the results show that the VGG16 architecture gives better accuracy compared to other architectures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805449 | PMC |
http://dx.doi.org/10.1155/2022/7672196 | DOI Listing |
Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.
View Article and Find Full Text PDFPLoS One
January 2025
School of Emergency Management, Institute of Disaster Prevention, Sanhe, Hebei, China.
With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia.
Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.
View Article and Find Full Text PDFPLoS One
January 2025
School of Business Economics, European Union University, Montreux, Switzerland.
As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!