Surgical Trauma in Mice Modifies the Content of Circulating Extracellular Vesicles.

Front Immunol

Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.

Published: March 2022

Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804340PMC
http://dx.doi.org/10.3389/fimmu.2021.824696DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
organs including
8
including brain
8
evs potential
8
cargo circulating
8
circulating evs
8
evs
6
surgery
5
surgical trauma
4
trauma mice
4

Similar Publications

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

The aim of present study was to evaluate the impact of perimenopause on insulin resistance. Specifically, insulin sensitivity was assessed in a perimenopausal mouse model treated with 4-vinylcyclohexene diepoxide (VCD), together with the changes in exosomal miRNA and hepatic mRNA expression profiles. Homeostasis model assessment of insulin resistance (HOMA-IR) was utilized to assess the status of insulin resistance, and insulin action was evaluated during menopausal transition.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!