Nutritional impact of omega 3 fatty acids and metabolites in acute and chronic critical illness.

Curr Opin Clin Nutr Metab Care

Division of Trauma and Acute Care Surgery, Department of Surgery, College of Medicine, University of Florida.

Published: March 2022

Purpose Of Review: Lipids have been utilized historically as a calorie dense means to ensure delivery of essential fatty acids (FA). Since the development of mixed lipid emulsion and investigation of immunomodulatory formulas, there has been an awakening that not all lipids are created equal. This narrative review focuses on contemporary evidence in the utilization of lipids (namely omega 3 fatty acids) in both acute and chronic critical illness.

Recent Findings: Though randomized control trials and meta-analyses provide little guidance regarding clinical practice for patients suffering from chronic critical illness, available literature suggests the potential to use lipid formulas to decrease the inflammatory cycle that drives catabolism. Additionally, this review will address the expanding evidence that specialized pro-resolving mediators (SPMs) may be the future of immunomodulating inflammation in acute and chronic critical illness and the persistent inflammation, immunosuppression, and catabolic syndrome (PICS).

Summary: Although societal guidelines, expert consensus, and literature support the use of omega 3 fatty acids in the acute critically ill population, more research is needed regarding omega 3 fatty acids for chronic critical illness and PICS.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCO.0000000000000818DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
chronic critical
20
omega fatty
16
critical illness
16
acute chronic
12
acids acute
8
fatty
5
acids
5
chronic
5
critical
5

Similar Publications

12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages.

ACS Chem Biol

January 2025

Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan.

Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins.

View Article and Find Full Text PDF

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase.

Int J Biol Macromol

January 2025

Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.

View Article and Find Full Text PDF

is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!