Yeast cells were transformed with a plasmid containing complementary DNA encoding the alpha subunit of the Torpedo californica acetylcholine receptor. These cells synthesized a protein that had the expected molecular weight, antigenic specificity, and ligand-binding properties of the alpha subunit. The subunit was inserted into the yeast plasma membrane, demonstrating that yeast has the apparatus to express a membrane-bound receptor protein and to insert such a foreign protein into its plasma membrane. The alpha subunit constituted approximately 1 percent of the total yeast membrane. The alpha subunit constituted approximately 1 percent of the total yeast membrane proteins, and its density was about the same in the plasma membrane of yeast and in the receptor-rich electric organ of Electrophorus electricus. In view of the available technology for obtaining large quantities of yeast proteins, it may now be possible to obtain amplified amounts of interesting membrane-bound proteins for physical and biochemical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.3511531DOI Listing

Publication Analysis

Top Keywords

alpha subunit
20
plasma membrane
12
torpedo californica
8
californica acetylcholine
8
acetylcholine receptor
8
yeast
8
membrane alpha
8
subunit constituted
8
constituted percent
8
percent total
8

Similar Publications

Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.

View Article and Find Full Text PDF

The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.

View Article and Find Full Text PDF

Comparison of Bacterial Intracellular and Secreted Proteins produced in Milk Versus Medium for Escherichia coli by Proteomic Analysis.

J Dairy Sci

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China. Electronic address:

The growth and reproduction of microorganisms are dependent on nutrient supply. Here, Milk and LB media were utilized as nutrition sources for Escherichia coli, and the changes in bacterial and secretory proteins at 3 time points (3, 9, and 18 h) in the growth cycle were studied using a label-free proteomics technique. The findings revealed that the abundances of bacterial intracellular proteins inosine/xanthosine triphosphatase and universal stress protein F increase dramatically during the growth phase in milk and LB media.

View Article and Find Full Text PDF

Background: Clozapine exhibits significant therapeutic efficacy in schizophrenia, especially treatment-resistant schizophrenia. However, clozapine can cause agranulocytosis, a fatal adverse effect, and the aim of this study is to explore this mechanism based on network pharmacology and molecular docking.

Method: Six and two databases were used to identify targets associated with clozapine and agranulocytosis, respectively.

View Article and Find Full Text PDF

In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!