A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deconvolution of Tc-99m-Mercaptoacetyltriglycine Renograms with the Concomitant Use of a Sparse Legendre Polynomial Representation and the Moore-Penrose Pseudo-inverse. | LitMetric

Objectives: This study aimed to introduce an improved deconvolution technique for Tc-99m-mercaptoacetyltriglycine renograms based on the combination of a sparse Legendre polynomial representation and the Moore-Penrose inversion matrix (LG). This method reduces the effect of noise on the measurement of renal retention function transit time (TT).

Methods: The stability and accuracy of the proposed method were tested using a renal database containing Monte Carlo-simulated studies and real adult patient data. Two clinical parameters, namely, split function (SF) and mean TT (meanTT), obtained with LG were compared with values calculated with the established method that combines matrix deconvolution and a three-point linear smoothing (F121) as recommended by the 2008 International Scientific Committee of Radionuclides in Nephrourology consensus on renal TT measurements.

Results: For simulated data, the root mean square error (RMSE) between the theoretical non-noisy renal retention curve (RRC) and the results of the deconvolution methods applied to the noisy RRC were up to two times lower with LG (p<0.001). The RMSE of the reconvoluted renogram and the theoretical one was also lower for LG (p<0.001) and showed better preservation of the original signal. The SF was neither improved nor degraded by the proposed method. For patient data, no statistically significant difference was found between the SF for the LG method compared with the database values, and the meanTT better agreed with the physician's diagnosis than the matrix or clinical software (Hermes) outputs. A visual improvement of the RRC was also observed.

Conclusion: By combining the sparse Legendre representation of the renogram curves and the Moore-Penrose matrix inverse techniques, we obtained improved noise reduction in the deconvoluted data, leading to better elimination of non-physiological signals -as negative values- and the avoidance of the smear effect of conventional smoothing on the vascular peak, which both influenced the meanTT measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814546PMC
http://dx.doi.org/10.4274/mirt.galenos.2021.17363DOI Listing

Publication Analysis

Top Keywords

tc-99m-mercaptoacetyltriglycine renograms
8
sparse legendre
8
legendre polynomial
8
polynomial representation
8
representation moore-penrose
8
renal retention
8
deconvolution
4
deconvolution tc-99m-mercaptoacetyltriglycine
4
renograms concomitant
4
concomitant sparse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!